## Outline

### Week 12: Vector differential equations

Course Notes: 6.3

Goals: be able to solve a linear system of differential equations; find characteristics of electrical networks involving inductors and capacitors using methods learned this term.

### **Differential Equations**

We're going to doing this in a linear-systems context soon.

 $y'(t) = \lambda y(t), \quad \lambda \text{ constant}$ 

## **Differential Equations**

We're going to doing this in a linear-systems context soon.

 $y'(t) = \lambda y(t), \quad \lambda \text{ constant}$ 

Solutions:  $y(t) = Ce^{\lambda t}$ , constant C

## **Differential Equations**

We're going to doing this in a linear-systems context soon.

 $y'(t) = \lambda y(t), \quad \lambda \text{ constant}$ 

Solutions:  $y(t) = Ce^{\lambda t}$ , constant C

Example: a population's growth rate is 0.3 times the number of individuals in that population per year.

## **Differential Equations**

We're going to doing this in a linear-systems context soon.

 $y'(t) = \lambda y(t), \quad \lambda \text{ constant}$ 

Solutions:  $y(t) = Ce^{\lambda t}$ , constant C

Example: a population's growth rate is 0.3 times the number of individuals in that population per year.

y'(t) = 0.3y(t)

## **Differential Equations**

We're going to doing this in a linear-systems context soon.

 $y'(t) = \lambda y(t), \quad \lambda \text{ constant}$ 

Solutions:  $y(t) = Ce^{\lambda t}$ , constant C

Example: a population's growth rate is 0.3 times the number of individuals in that population per year.

y'(t) = 0.3y(t)

 $y(t) = Ce^{0.3t}$  for some constant C

## **Differential Equations**

We're going to doing this in a linear-systems context soon.

 $y'(t) = \lambda y(t), \quad \lambda \text{ constant}$ 

Solutions:  $y(t) = Ce^{\lambda t}$ , constant C

Example: a population's growth rate is 0.3 times the number of individuals in that population per year.

y'(t) = 0.3y(t)

 $y(t) = Ce^{0.3t}$  for some constant C

At year t = 0, there are 100 individuals.

## **Differential Equations**

We're going to doing this in a linear-systems context soon.

 $y'(t) = \lambda y(t), \quad \lambda \text{ constant}$ 

Solutions:  $y(t) = Ce^{\lambda t}$ , constant C

Example: a population's growth rate is 0.3 times the number of individuals in that population per year.

y'(t) = 0.3y(t)

 $y(t) = Ce^{0.3t}$  for some constant C

At year t = 0, there are 100 individuals.

 $y(t) = 100e^{0.3t}$ 

### **Differential Equations**

Example: a radioactive substance decays at a rate of 2% of its mass every year.

### **Differential Equations**

Example: a radioactive substance decays at a rate of 2% of its mass every year.

y'(t) = -0.02y(t)

### **Differential Equations**

Example: a radioactive substance decays at a rate of 2% of its mass every year.

y'(t) = -0.02y(t)

 $y(t) = Ce^{-0.02t}$  where C is the amount at t = 0

### Systems of Linear Differential Equations

$$y'_1(t) = ay_1(t) + by_2(t)$$
  
 $y'_2(t) = cy_1(t) + dy_2(t)$ 

## Systems of Linear Differential Equations

$$\begin{array}{rcl} y_1'(t) &=& a y_1(t) &+& b y_2(t) \\ y_2'(t) &=& c y_1(t) &+& d y_2(t) \end{array}$$

Example:  $y_1$  population of lynx,  $y_2$  population of hares

## Systems of Linear Differential Equations

$$y'_1(t) = ay_1(t) + by_2(t)$$
  
 $y'_2(t) = cy_1(t) + dy_2(t)$ 

Example:  $y_1$  population of lynx,  $y_2$  population of hares

$$\mathbf{y}' := \begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix} \qquad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \mathbf{y} := \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$$
$$\mathbf{y}' = A\mathbf{y}$$

## Systems of Linear Differential Equations

$$\begin{array}{rcl} y_1'(t) &=& a y_1(t) &+& b y_2(t) \\ y_2'(t) &=& c y_1(t) &+& d y_2(t) \end{array}$$

Example:  $y_1$  population of lynx,  $y_2$  population of hares

$$\mathbf{y}' := \begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix} \qquad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \mathbf{y} := \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$$
$$\mathbf{y}' = A\mathbf{y}$$

Note: there isn't something weird going on with "differentiating a vector." We're just differentiating each (totally standard) equation inside the vector.

### Guessing Solutions: Eigenvectors

Differential Equation:

$$\mathbf{y}' = A\mathbf{y}$$

Let's take a guess from our previous examples: what if

$$\begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \mathbf{y} = e^{\lambda t} \mathbf{x} = \begin{bmatrix} x_1 e^{\lambda t} \\ x_2 e^{\lambda t} \\ \vdots \\ x_n e^{\lambda t} \end{bmatrix}$$

for some constant  $\lambda$  and some constant vector  $\mathbf{x}?$ 

## Guessing Solutions: Eigenvectors

Differential Equation:

$$\mathbf{y}' = A\mathbf{y}$$

Let's take a guess from our previous examples: what if

$$\begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \mathbf{y} = e^{\lambda t} \mathbf{x} = \begin{bmatrix} x_1 e^{\lambda t} \\ x_2 e^{\lambda t} \\ \vdots \\ x_n e^{\lambda t} \end{bmatrix}$$

for some constant  $\lambda$  and some constant vector  $\mathbf{x}?$ 

Then:
$$\mathbf{y}' = \lambda e^{\lambda t} \mathbf{x}$$
So, if  $\mathbf{y}' = A\mathbf{y}$ : $\lambda e^{\lambda t} \mathbf{x} = A(e^{\lambda t} \mathbf{x})$ Hence: $\lambda \mathbf{x} = A\mathbf{x}$ 

so  $\lambda$  and **x** are an eigenvalue/eigenvector pair of A.

### Guessing Solutions: Eigenvectors

Differential Equation:

$$\mathbf{y}' = A\mathbf{y}$$

Let's take a guess from our previous examples: what if

$$\begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_n(t) \end{bmatrix} = \mathbf{y} = e^{\lambda t} \mathbf{x} = \begin{bmatrix} x_1 e^{\lambda t} \\ x_2 e^{\lambda t} \\ \vdots \\ x_n e^{\lambda t} \end{bmatrix}$$

for some constant  $\lambda$  and some constant vector  $\mathbf{x}?$ 

We've successfully guessed a solution!

$$\mathbf{y} = e^{\lambda t} \mathbf{x}$$

where  $\lambda$ , **x** are an eigenvalue/eigenvector pair of A

# Systems of Linear Differential Equations: Adding Solutions

Adding Solutions

Suppose  $\mathbf{y}_1$  and  $\mathbf{y}_2$  are both solutions to the system of differential equations  $A\mathbf{y} = \mathbf{y}'$ .

# Systems of Linear Differential Equations: Adding Solutions

Adding Solutions

Suppose  $\mathbf{y}_1$  and  $\mathbf{y}_2$  are both solutions to the system of differential equations  $A\mathbf{y} = \mathbf{y}'$ . Then  $(\mathbf{y}_1 + \mathbf{y}_2)$  is *also* a solution.

# Systems of Linear Differential Equations: Adding Solutions

Adding Solutions

Suppose  $\mathbf{y}_1$  and  $\mathbf{y}_2$  are both solutions to the system of differential equations  $A\mathbf{y} = \mathbf{y}'$ . Then  $(\mathbf{y}_1 + \mathbf{y}_2)$  is *also* a solution.

Further,  $(c_1\mathbf{y}_1 + c_2\mathbf{y}_2)$  is *also* a solution, for any constants  $c_1$  and  $c_2$ . (Home exercise: prove this is true!)

## Solutions to Systems of Linear Differential Equations

#### Theorem

Suppose A is an *n*-by-*n* matrix with eigenvalues and vectors  $\lambda_1, \lambda_2, \ldots, \lambda_k$  and  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ . Then for any choice of constants  $c_1, c_2, \ldots, c_k$ ,

$$\mathbf{y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_k e^{\lambda_k t} \mathbf{x}_k$$

## Solutions to Systems of Linear Differential Equations

#### Theorem

Suppose A is an *n*-by-*n* matrix with eigenvalues and vectors  $\lambda_1, \lambda_2, \ldots, \lambda_k$  and  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ . Then for any choice of constants  $c_1, c_2, \ldots, c_k$ ,

$$\mathbf{y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_k e^{\lambda_k t} \mathbf{x}_k$$

is a solution to the equation  $\mathbf{y}' = A\mathbf{y}$ .

Example:  $\mathbf{y}' = \mathbf{l}\mathbf{y}, \ \mathbf{y} \in \mathbb{R}^2$ 

## Solutions to Systems of Linear Differential Equations

#### Theorem

Suppose A is an *n*-by-*n* matrix with eigenvalues and vectors  $\lambda_1, \lambda_2, \ldots, \lambda_k$  and  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ . Then for any choice of constants  $c_1, c_2, \ldots, c_k$ ,

$$\mathbf{y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_k e^{\lambda_k t} \mathbf{x}_k$$

Example: 
$$\mathbf{y}' = \mathbf{l}\mathbf{y}, \mathbf{y} \in \mathbb{R}^2$$
  
 $\lambda_1 = 1, \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \qquad \qquad \lambda_2 = 1, \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 

## Solutions to Systems of Linear Differential Equations

#### Theorem

Suppose A is an *n*-by-*n* matrix with eigenvalues and vectors  $\lambda_1, \lambda_2, \ldots, \lambda_k$  and  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ . Then for any choice of constants  $c_1, c_2, \ldots, c_k$ ,

$$\mathbf{y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_k e^{\lambda_k t} \mathbf{x}_k$$

Example: 
$$\mathbf{y}' = \mathbf{l}\mathbf{y}, \ \mathbf{y} \in \mathbb{R}^2$$
  
 $\lambda_1 = 1, \ \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix};$   
 $\mathbf{y}(t) = c_1 e^t \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 e^t \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$ 

$$\lambda_2 = 1, \mathbf{x}_2 = \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix}$$

## Solutions to Systems of Linear Differential Equations

#### Theorem

Suppose A is an *n*-by-*n* matrix with eigenvalues and vectors  $\lambda_1, \lambda_2, \ldots, \lambda_k$  and  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ . Then for any choice of constants  $c_1, c_2, \ldots, c_k$ ,

$$\mathbf{y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_k e^{\lambda_k t} \mathbf{x}_k$$

is a solution to the equation  $\mathbf{y}' = A\mathbf{y}$ .

General Question: Is there a solution to  $\mathbf{y}' = A\mathbf{y}$  that also has  $\mathbf{y}(0) = \mathbf{y}_0$ , for some constant vector  $\mathbf{y}_0$ ?

## Solutions to Systems of Linear Differential Equations

#### Theorem

Suppose A is an *n*-by-*n* matrix with eigenvalues and vectors  $\lambda_1, \lambda_2, \ldots, \lambda_k$  and  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ . Then for any choice of constants  $c_1, c_2, \ldots, c_k$ ,

$$\mathbf{y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_k e^{\lambda_k t} \mathbf{x}_k$$

is a solution to the equation  $\mathbf{y}' = A\mathbf{y}$ .

General Question: Is there a solution to  $\mathbf{y}' = A\mathbf{y}$  that also has  $\mathbf{y}(0) = \mathbf{y}_0$ , for some constant vector  $\mathbf{y}_0$ ? Suppose it has the form above:

$$\mathbf{y}(0) = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_k \mathbf{x}_k \stackrel{?}{=} \stackrel{?}{=} \mathbf{y}_0$$

## Solutions to Systems of Linear Differential Equations

#### Theorem

Suppose A is an *n*-by-*n* matrix with eigenvalues and vectors  $\lambda_1, \lambda_2, \ldots, \lambda_k$  and  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ . Then for any choice of constants  $c_1, c_2, \ldots, c_k$ ,

$$\mathbf{y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_k e^{\lambda_k t} \mathbf{x}_k$$

is a solution to the equation  $\mathbf{y}' = A\mathbf{y}$ .

General Question: Is there a solution to  $\mathbf{y}' = A\mathbf{y}$  that also has  $\mathbf{y}(0) = \mathbf{y}_0$ , for some constant vector  $\mathbf{y}_0$ ? Suppose it has the form above:

$$\mathbf{y}(0) = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_k \mathbf{x}_k$$
? =?  $\mathbf{y}_0$ 

If the eigenvectors of A form a *basis* then there is always exactly one solution to  $\mathbf{y}' = A\mathbf{y}$  with any desired initial condition  $\mathbf{y}(0) = \mathbf{y}_0$ , and it has the form given above.

## Solutions to Systems of Linear Differential Equations

#### Theorem

Suppose A is an *n*-by-*n* matrix with eigenvalues and vectors  $\lambda_1, \lambda_2, \ldots, \lambda_k$  and  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ . Then for any choice of constants  $c_1, c_2, \ldots, c_k$ ,

$$\mathbf{y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_k e^{\lambda_k t} \mathbf{x}_k$$

Example: 
$$\mathbf{y}' = \mathbf{l}\mathbf{y}, \mathbf{y} \in \mathbb{R}^2$$
  
 $\lambda_1 = 1, \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \qquad \qquad \lambda_2 = 1, \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 

## Solutions to Systems of Linear Differential Equations

#### Theorem

Suppose A is an *n*-by-*n* matrix with eigenvalues and vectors  $\lambda_1, \lambda_2, \ldots, \lambda_k$  and  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ . Then for any choice of constants  $c_1, c_2, \ldots, c_k$ ,

$$\mathbf{y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_k e^{\lambda_k t} \mathbf{x}_k$$

Example: 
$$\mathbf{y}' = |\mathbf{y}, \mathbf{y} \in \mathbb{R}^2$$
  
 $\lambda_1 = 1, \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix};$   
Suppose we have initial conditions  $\mathbf{y}(0) = \begin{bmatrix} 7 \\ -3 \end{bmatrix}.$ 

## Solutions to Systems of Linear Differential Equations

#### Theorem

Suppose A is an *n*-by-*n* matrix with eigenvalues and vectors  $\lambda_1, \lambda_2, \ldots, \lambda_k$  and  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ . Then for any choice of constants  $c_1, c_2, \ldots, c_k$ ,

$$\mathbf{y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_k e^{\lambda_k t} \mathbf{x}_k$$

Example: 
$$\mathbf{y}' = |\mathbf{y}, \mathbf{y} \in \mathbb{R}^2$$
  
 $\lambda_1 = 1, \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix};$   
Suppose we have initial conditions  $\mathbf{y}(0) = \begin{bmatrix} 7 \\ -3 \end{bmatrix}.$   
 $\mathbf{y} = 7e^t \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 3e^t \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 7e^t \\ -3e^t \end{bmatrix}.$ 

### Example

Find the solution to the system of linear differential equations

$$y_1'(t) = y_1(t) + 4y_2(t) + 5y_3(t) y_2'(t) = 2y_2(t) + 6y_3(t) y_3'(t) = 3y_3(t)$$

with initial condition

$$\mathbf{y}(0) = \begin{bmatrix} 0\\11\\2 \end{bmatrix}$$

### Example

Find the solution to the system of linear differential equations

$$y_1'(t) = y_1(t) + 4y_2(t) + 5y_3(t) y_2'(t) = 2y_2(t) + 6y_3(t) y_3'(t) = 3y_3(t)$$

with initial condition

$$\mathbf{y}(0) = \begin{bmatrix} 0\\11\\2 \end{bmatrix}$$

 $A = \begin{bmatrix} 1 & 4 & 5 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{bmatrix}$ 

solving  $\mathbf{y}' = A\mathbf{y}$ 

### Example

Find the solution to the system of linear differential equations

with initial condition

$$\mathbf{y}(0) = \begin{bmatrix} 0\\11\\2 \end{bmatrix}$$

\_

$$A = \begin{bmatrix} 1 & 4 & 5 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{bmatrix} \text{ solving } \mathbf{y}' = A\mathbf{y}$$
$$\lambda_1 = 1, \, \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \lambda_2 = 2, \, \mathbf{x}_2 = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} \qquad \lambda_3 = 3, \, \mathbf{x}_3 = \begin{bmatrix} 29 \\ 12 \\ 2 \end{bmatrix}$$

The form of the solution will be:

$$\mathbf{y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_k e^{\lambda_k t} \mathbf{x}_k$$

That is:

$$\mathbf{y}(t) = c_1 e^t \begin{bmatrix} 1\\0\\0 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 4\\1\\0 \end{bmatrix} + c_3 e^{3t} \begin{bmatrix} 29\\12\\2 \end{bmatrix}$$

To find the constants  $c_1$ ,  $c_2$ ,  $c_3$  we solve:

$$\begin{bmatrix} 0\\11\\2 \end{bmatrix} = c_1 \begin{bmatrix} 1\\0\\0 \end{bmatrix} + c_2 \begin{bmatrix} 4\\1\\0 \end{bmatrix} + c_3 \begin{bmatrix} 29\\12\\2 \end{bmatrix}$$

So  $c_1 = -25$ ,  $c_2 = -1$ , and  $c_3 = 1$ . Our solution is:

$$\mathbf{y}(t) = -25e^{t} \begin{bmatrix} 1\\0\\0 \end{bmatrix} - 1e^{2t} \begin{bmatrix} 4\\1\\0 \end{bmatrix} + e^{3t} \begin{bmatrix} 29\\12\\2 \end{bmatrix} = \begin{bmatrix} -25e^{t} - 4e^{2t} + 29e^{3t}\\-e^{2t} + 12e^{3t}\\2e^{3t} \end{bmatrix}$$

### Example

Find the solution to the system of linear differential equations

$$egin{array}{rll} y_1'(t)&=&y_1(t)\ y_2'(t)&=&3y_1(t)&-&y_2(t) \end{array}$$

with initial condition

$$\mathbf{y}(0) = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

### Example

Find the solution to the system of linear differential equations

$$egin{array}{rll} y_1'(t)&=&y_1(t)\ y_2'(t)&=&3y_1(t)&-&y_2(t) \end{array}$$

with initial condition

$$\mathbf{y}(0) = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

### Example

Find the solution to the system of linear differential equations

$$egin{array}{rll} y_1'(t)&=&y_1(t)\ y_2'(t)&=&3y_1(t)&-&y_2(t) \end{array}$$

E . . . . .

with initial condition

$$\mathbf{y}(0) = \begin{bmatrix} 4\\1 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 0\\3 & -1 \end{bmatrix} \qquad \lambda_1 = 1, \ \mathbf{x}_1 = \begin{bmatrix} 2\\3 \end{bmatrix} \qquad \lambda_2 = -1, \ \mathbf{x}_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$$

The form of the solution will be:

$$\mathbf{y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_k e^{\lambda_k t} \mathbf{x}_k$$

That is:

$$\mathbf{y}(t) = c_1 e^t \begin{bmatrix} 2\\ 3 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} 0\\ 1 \end{bmatrix}$$

To find the constants  $c_1$ ,  $c_2$  we solve:

$$\begin{bmatrix} 4\\1 \end{bmatrix} = c_1 \begin{bmatrix} 2\\3 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1 \end{bmatrix}$$

So  $c_1 = 2$ ,  $c_2 = -5$ . Our solution is:

$$\mathbf{y}(t) = 2e^{t} \begin{bmatrix} 2\\ 3 \end{bmatrix} - 5e^{-t} \begin{bmatrix} 0\\ 1 \end{bmatrix} = \begin{bmatrix} 4e^{t}\\ 6e^{t} - 5e^{-t} \end{bmatrix}$$

## Quick Recap

$$\begin{array}{rcl} y_1'(t) &=& y_1(t) + 2y_2(t) \\ y_2'(t) &=& y_1(t) + 2y_2(t) \end{array} ; \qquad \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

## Quick Recap

$$\begin{array}{rcl} y_1'(t) &=& y_1(t) + 2y_2(t) \\ y_2'(t) &=& y_1(t) + 2y_2(t) \end{array} ; \qquad \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

1. Create the matrix of coefficients

## Quick Recap

$$y_1'(t) = y_1(t) + 2y_2(t)$$
  
 $y_2'(t) = y_1(t) + 2y_2(t)$ ;  $\begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$ 

1. Create the matrix of coefficients

## Quick Recap

$$\begin{array}{rcl} y_1'(t) &=& y_1(t) + 2y_2(t) \\ y_2'(t) &=& y_1(t) + 2y_2(t) \end{array} ; \qquad \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

- 1. Create the matrix of coefficients
- 2. Find eigenvalues and corresponding eigenvectors

## Quick Recap

$$\begin{array}{rcl} y_1'(t) &=& y_1(t) + 2y_2(t) \\ y_2'(t) &=& y_1(t) + 2y_2(t) \end{array} ; \qquad \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

- 1. Create the matrix of coefficients
- 2. Find eigenvalues and corresponding eigenvectors  $\lambda_1 = 0$ ,  $\begin{bmatrix} -2 & 1 \end{bmatrix}^T$ ;  $\lambda_2 = 3$ ,  $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$

## Quick Recap

$$\begin{array}{rcl} y_1'(t) &=& y_1(t) + 2y_2(t) \\ y_2'(t) &=& y_1(t) + 2y_2(t) \end{array} ; \qquad \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

- 1. Create the matrix of coefficients
- 2. Find eigenvalues and corresponding eigenvectors  $\lambda_1 = 0, \begin{bmatrix} -2 & 1 \end{bmatrix}^T; \quad \lambda_2 = 3, \begin{bmatrix} 1 & 1 \end{bmatrix}^T$
- 3. The general solution is  $\mathbf{y} = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \cdots + c_n e^{\lambda_n t} \mathbf{x}_n$

## Quick Recap

$$\begin{array}{rcl} y_1'(t) &=& y_1(t) + 2y_2(t) \\ y_2'(t) &=& y_1(t) + 2y_2(t) \end{array} ; \qquad \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

- 1. Create the matrix of coefficients
- 2. Find eigenvalues and corresponding eigenvectors  $\lambda_1 = 0, \begin{bmatrix} -2 & 1 \end{bmatrix}^T; \quad \lambda_2 = 3, \begin{bmatrix} 1 & 1 \end{bmatrix}^T$
- 3. The general solution is  $\mathbf{y} = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \cdots + c_n e^{\lambda_n t} \mathbf{x}_n$  $\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = c_1 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

## Quick Recap

$$\begin{array}{rcl} y_1'(t) &=& y_1(t) + 2y_2(t) \\ y_2'(t) &=& y_1(t) + 2y_2(t) \end{array} ; \qquad \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

- 1. Create the matrix of coefficients
- 2. Find eigenvalues and corresponding eigenvectors  $\lambda_1 = 0, \begin{bmatrix} -2 & 1 \end{bmatrix}^T; \quad \lambda_2 = 3, \begin{bmatrix} 1 & 1 \end{bmatrix}^T$
- 3. The general solution is  $\mathbf{y} = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \cdots + c_n e^{\lambda_n t} \mathbf{x}_n$  $\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = c_1 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- 4. Find the values of *c<sub>i</sub>* that fit the initial conditions. That gives you the particular solution.

## Quick Recap

$$\begin{array}{rcl} y_1'(t) &=& y_1(t) + 2y_2(t) \\ y_2'(t) &=& y_1(t) + 2y_2(t) \end{array} ; \qquad \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

- 1. Create the matrix of coefficients
- 2. Find eigenvalues and corresponding eigenvectors  $\lambda_1 = 0, \begin{bmatrix} -2 & 1 \end{bmatrix}^T; \quad \lambda_2 = 3, \begin{bmatrix} 1 & 1 \end{bmatrix}^T$
- 3. The general solution is  $\mathbf{y} = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \cdots + c_n e^{\lambda_n t} \mathbf{x}_n$  $\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = c_1 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- 4. Find the values of *c<sub>i</sub>* that fit the initial conditions. That gives you the particular solution.

$$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} + 2e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 + 2e^{3t} \\ 1 + 2e^{3t} \end{bmatrix}$$

$$\begin{array}{rcl} y_1'(t) &=& y_1(t) + 4y_2(t) \\ y_2'(t) &=& 3y_1(t) + 5y_2(t) \end{array} ; \qquad \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$$

$$y'_{1}(t) = y_{1}(t) + 4y_{2}(t) \\ y'_{2}(t) = 3y_{1}(t) + 5y_{2}(t) ; \qquad \begin{bmatrix} y_{1}(0) \\ y_{2}(0) \end{bmatrix} = \begin{bmatrix} -8 \\ 4 \end{bmatrix} \\ A = \begin{bmatrix} 1 & 4 \\ 3 & 5 \end{bmatrix};$$

$$y_{1}'(t) = y_{1}(t) + 4y_{2}(t) \\ y_{2}'(t) = 3y_{1}(t) + 5y_{2}(t) \quad ; \quad \begin{bmatrix} y_{1}(0) \\ y_{2}(0) \end{bmatrix} = \begin{bmatrix} -8 \\ 4 \end{bmatrix} \\ A = \begin{bmatrix} 1 & 4 \\ 3 & 5 \end{bmatrix}; \quad \lambda_{1} = 7, \ \mathbf{x}_{1} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad \lambda_{2} = -1, \ \mathbf{x}_{2} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$y_1'(t) = y_1(t) + 4y_2(t) \\ y_2'(t) = 3y_1(t) + 5y_2(t) \qquad ; \qquad \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 4 \\ 3 & 5 \end{bmatrix}; \qquad \lambda_1 = 7, \ \mathbf{x}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \qquad \lambda_2 = -1, \ \mathbf{x}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
General solution:

$$\mathbf{y}(t) = c_1 e^{7t} \mathbf{x}_2 + c_2 e^{-t} \mathbf{x}_2$$

## More Practice

$$y_1'(t) = y_1(t) + 4y_2(t) \\ y_2'(t) = 3y_1(t) + 5y_2(t) \qquad ; \qquad \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 4 \\ 3 & 5 \end{bmatrix}; \qquad \lambda_1 = 7, \ \mathbf{x}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \qquad \lambda_2 = -1, \ \mathbf{x}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
General solution:

$$\mathbf{y}(t) = c_1 e^{7t} \mathbf{x}_2 + c_2 e^{-t} \mathbf{x}_2$$

Particular solution:

$$\mathbf{y}(t) = 4e^{-1} \begin{bmatrix} -2\\1 \end{bmatrix} = \begin{bmatrix} -8e^{-t}\\4e^{-t} \end{bmatrix}$$

#### More Practice

$$y_1'(t) = y_1(t) + 4y_2(t) \\ y_2'(t) = 3y_1(t) + 5y_2(t) \qquad ; \qquad \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 4 \\ 3 & 5 \end{bmatrix}; \qquad \lambda_1 = 7, \ \mathbf{x}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \qquad \lambda_2 = -1, \ \mathbf{x}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
General solution:

$$\mathbf{y}(t) = c_1 e^{7t} \mathbf{x}_2 + c_2 e^{-t} \mathbf{x}_2$$

Particular solution:

$$\mathbf{y}(t) = 4e^{-1} \begin{bmatrix} -2\\1 \end{bmatrix} = \begin{bmatrix} -8e^{-t}\\4e^{-t} \end{bmatrix}$$

Note:  $\lim_{t\to\infty} \mathbf{y}(t) = \begin{bmatrix} 0\\0 \end{bmatrix}$ ; if we'd had different initial conditions, these limits might have been infinite.

#### End Behaviour

Constants *c* are determined by *initial conditions*, i.e. y(0);  $\lambda$  and **x** are an eigenvalue-eigenvector pair.

| $\lambda = 1$  | $ce^t \mathbf{x}$   |  |
|----------------|---------------------|--|
| $\lambda = -1$ | $ce^{-t}\mathbf{x}$ |  |
| $\lambda = 0$  | СХ                  |  |

#### End Behaviour

Constants *c* are determined by *initial conditions*, i.e. y(0);  $\lambda$  and **x** are an eigenvalue-eigenvector pair.

 $\begin{array}{ll} \lambda = 1 & ce^{t} \mathbf{x} & \xrightarrow{t \to \infty} \pm \infty & \text{if } c \neq 0 \\ \lambda = -1 & ce^{-t} \mathbf{x} \\ \lambda = 0 & c \mathbf{x} \end{array}$ 

#### End Behaviour

Constants *c* are determined by *initial conditions*, i.e. y(0);  $\lambda$  and **x** are an eigenvalue-eigenvector pair.

 $\begin{array}{ll} \lambda = 1 & ce^{t} \mathbf{x} & \xrightarrow{t \to \infty} \pm \infty & \text{if } c \neq 0 \\ \lambda = -1 & ce^{-t} \mathbf{x} & \xrightarrow{t \to \infty} 0 \\ \lambda = 0 & c \mathbf{x} \end{array}$ 

#### End Behaviour

Constants *c* are determined by *initial conditions*, i.e. y(0);  $\lambda$  and **x** are an eigenvalue-eigenvector pair.

 $\begin{array}{ll} \lambda = 1 & ce^{t}\mathbf{x} & \xrightarrow{t \to \infty} \pm \infty & \text{if } c \neq 0 \\ \lambda = -1 & ce^{-t}\mathbf{x} & \xrightarrow{t \to \infty} 0 \\ \lambda = 0 & c\mathbf{x} & \xrightarrow{t \to \infty} c\mathbf{x} & \text{if } c \neq 0 \end{array}$ 

### End Behaviour

Constants *c* are determined by *initial conditions*, i.e. y(0);  $\lambda$  and **x** are an eigenvalue-eigenvector pair.

| $\lambda = 1$  | $ce^t \mathbf{x}$   | $\xrightarrow{t \to \infty} \pm \infty$ | if $c \neq 0$ |
|----------------|---------------------|-----------------------------------------|---------------|
| $\lambda = -1$ | $ce^{-t}\mathbf{x}$ | $\xrightarrow{t \to \infty} 0$          |               |
| $\lambda = 0$  | СХ                  | $\xrightarrow{t 	o \infty}$ cx          | if $c \neq 0$ |

Positive real eigenvalues lead to solutions that can diverge to  $\pm\infty$  (depending on initial conditions);

Negative real eigenvalues lead to solutions that can converge to 0 (depending on initial conditions);

An eigenvalue of zero leads to solutions that can converge to a nonzero constant (depending on initial conditions);

$$\begin{array}{rcl} y_1'(t) &=& y_1(t) + 4y_2(t) \\ y_2'(t) &=& 3y_1(t) + 5y_2(t) \end{array} \implies \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 2c_1 e^{7t} - 2c_2 e^{-t} \\ 3c_1 e^{7t} + c_2 e^{-t} \end{bmatrix}$$

$$\begin{array}{l} y_1'(t) &= y_1(t) + 4y_2(t) \\ y_2'(t) &= 3y_1(t) + 5y_2(t) \\ \text{If } \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}, \text{ then } \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} -8e^{-t} \\ 4e^{-t} \end{bmatrix}$$

$$\begin{array}{l} y_1'(t) &= y_1(t) + 4y_2(t) \\ y_2'(t) &= 3y_1(t) + 5y_2(t) \\ \end{array} \Longrightarrow \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 2c_1e^{7t} - 2c_2e^{-t} \\ 3c_1e^{7t} + c_2e^{-t} \end{bmatrix} \\ \\ \begin{array}{l} \text{If } \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}, \text{ then } \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} -8e^{-t} \\ 4e^{-t} \end{bmatrix}$$



$$y_{1}'(t) = y_{1}(t) + 4y_{2}(t) \implies \begin{bmatrix} y_{1}(t) \\ y_{2}(t) \end{bmatrix} = \begin{bmatrix} 2c_{1}e^{7t} - 2c_{2}e^{-t} \\ 3c_{1}e^{7t} + c_{2}e^{-t} \end{bmatrix}$$

$$If \begin{bmatrix} y_{1}(0) \\ y_{2}(0) \end{bmatrix} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}, \text{ then } \begin{bmatrix} y_{1}(t) \\ y_{2}(t) \end{bmatrix} = \begin{bmatrix} -8e^{-t} \\ 4e^{-t} \end{bmatrix}$$

$$If \begin{bmatrix} y_{1}(0) \\ y_{2}(0) \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \end{bmatrix}, \text{ then } \begin{bmatrix} y_{1}(t) \\ y_{2}(t) \end{bmatrix} = \begin{bmatrix} 6e^{7t} - 2e^{-t} \\ 9e^{7t} + e^{-t} \end{bmatrix}$$

$$y$$

$$y$$

$$y_{1}(t) = -8e^{-t}$$

$$t$$

$$y_{1}'(t) = y_{1}(t) + 4y_{2}(t) \implies \begin{bmatrix} y_{1}(t) \\ y_{2}(t) \end{bmatrix} = \begin{bmatrix} 2c_{1}e^{7t} - 2c_{2}e^{-t} \\ 3c_{1}e^{7t} + c_{2}e^{-t} \end{bmatrix}$$

$$If \begin{bmatrix} y_{1}(0) \\ y_{2}(0) \end{bmatrix} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}, \text{ then } \begin{bmatrix} y_{1}(t) \\ y_{2}(t) \end{bmatrix} = \begin{bmatrix} -8e^{-t} \\ 4e^{-t} \end{bmatrix}$$

$$If \begin{bmatrix} y_{1}(0) \\ y_{2}(0) \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \end{bmatrix}, \text{ then } \begin{bmatrix} y_{1}(t) \\ y_{2}(t) \end{bmatrix} = \begin{bmatrix} 6e^{7t} - 2e^{-t} \\ 9e^{7t} + e^{-t} \end{bmatrix}$$

$$y$$

$$y$$

$$y$$

$$y_{1}(t) = -8e^{-t}$$

$$y_{1}(t) = -8e^{-t}$$

$$y_{1}(t) = 6e^{7t} - 2e^{-t}$$

$$y_{1}(t) = 6e^{7t} - 2e^{-t}$$

## **Complex Eigenvalues**

$$\mathbf{y}'(t) = \begin{bmatrix} 0 & -2 \\ 8 & 0 \end{bmatrix} \mathbf{y}(t) \qquad \mathbf{y}(0) = \begin{bmatrix} -4 \\ 12 \end{bmatrix}$$

### **Complex Eigenvalues**

$$\mathbf{y}'(t) = \begin{bmatrix} 0 & -2 \\ 8 & 0 \end{bmatrix} \mathbf{y}(t) \qquad \mathbf{y}(0) = \begin{bmatrix} -4 \\ 12 \end{bmatrix}$$

Eigenvalues:  $\lambda_1 = 4i$ ,  $\lambda_2 = -4i$ 

## **Complex Eigenvalues**

$$\mathbf{y}'(t) = \begin{bmatrix} 0 & -2 \\ 8 & 0 \end{bmatrix} \mathbf{y}(t) \qquad \mathbf{y}(0) = \begin{bmatrix} -4 \\ 12 \end{bmatrix}$$

Eigenvalues: 
$$\lambda_1 = 4i$$
,  $\lambda_2 = -4i$   
Eigenvectors:  $\mathbf{x_1} = \begin{bmatrix} i \\ 2 \end{bmatrix}$ ,  $\mathbf{x_2} = \begin{bmatrix} -i \\ 2 \end{bmatrix}$ 

### **Complex Eigenvalues**

$$\mathbf{y}'(t) = \begin{bmatrix} 0 & -2 \\ 8 & 0 \end{bmatrix} \mathbf{y}(t) \qquad \mathbf{y}(0) = \begin{bmatrix} -4 \\ 12 \end{bmatrix}$$

Eigenvalues: 
$$\lambda_1 = 4i$$
,  $\lambda_2 = -4i$   
Eigenvectors:  $\mathbf{x_1} = \begin{bmatrix} i \\ 2 \end{bmatrix}$ ,  $\mathbf{x_2} = \begin{bmatrix} -i \\ 2 \end{bmatrix}$ 

General solution:  $\mathbf{y}(t) = c_1 e^{4it} \mathbf{x}_1 + c_2 e^{-4it} \mathbf{x}_2$ for some constants  $c_1$  and  $c_2$ .

#### **Complex Eigenvalues**

$$\mathbf{y}'(t) = \begin{bmatrix} 0 & -2 \\ 8 & 0 \end{bmatrix} \mathbf{y}(t) \qquad \mathbf{y}(0) = \begin{bmatrix} -4 \\ 12 \end{bmatrix}$$

Eigenvalues: 
$$\lambda_1 = 4i$$
,  $\lambda_2 = -4i$   
Eigenvectors:  $\mathbf{x_1} = \begin{bmatrix} i \\ 2 \end{bmatrix}$ ,  $\mathbf{x_2} = \begin{bmatrix} -i \\ 2 \end{bmatrix}$ 

General solution:  $\mathbf{y}(t) = c_1 e^{4it} \mathbf{x}_1 + c_2 e^{-4it} \mathbf{x}_2$ for some constants  $c_1$  and  $c_2$ .

Particular solution:  $\mathbf{y}(t) = (3+2i)e^{4it}\mathbf{x}_1 + (3-2i)e^{-4it}\mathbf{x}_2$ 

#### Complex Eigenvalues: Particular Solution

$$\begin{aligned} \mathbf{y}(t) &= (3+2i)e^{4it}\mathbf{x}_1 + (3-2i)e^{-4it}\mathbf{x}_2 \\ &= (3+2i)[\cos(4t) + i\sin(4t)]\mathbf{x}_1 + (3-2i)[\cos(-4t) + i\sin(-4t)]\mathbf{x}_2 \\ &= (3+2i)[\cos(4t) + i\sin(4t)]\mathbf{x}_1 + (3-2i)[\cos(4t) - i\sin(4t)]\mathbf{x}_2 \\ &= (3+2i)[\cos(4t) + i\sin(4t)]\begin{bmatrix}i\\2\end{bmatrix} + (3-2i)[\cos(4t) - i\sin(4t)]\begin{bmatrix}i\\2\end{bmatrix} \\ &= \cdots \\ &= \begin{bmatrix}-4\cos(4t) - 6\sin(4t)\\12\cos(4t) - 8\sin(4t)\end{bmatrix}\end{aligned}$$

#### Complex Eigenvalues: Particular Solution



Complex Eigenvalues: Closer Look You should be able to follow this explanation, but you don't have to memorize it

Suppose  $\lambda_1 = \overline{\lambda_2}$  and  $\mathbf{x}_1 = \overline{\mathbf{x}_2}$ .

Complex Eigenvalues: Closer Look You should be able to follow this explanation, but you don't have to memorize it

Suppose  $\lambda_1 = \overline{\lambda_2}$  and  $\mathbf{x}_1 = \overline{\mathbf{x}_2}$ .

Then  $e^{\lambda_1 t} \mathbf{x_1} = \overline{e^{\lambda_2 t} \mathbf{x_2}}$ .

Complex Eigenvalues: Closer Look You should be able to follow this explanation, but you don't have to memorize it

Suppose  $\lambda_1 = \overline{\lambda_2}$  and  $\mathbf{x}_1 = \overline{\mathbf{x}_2}$ .

Then  $e^{\lambda_1 t} \mathbf{x_1} = \overline{e^{\lambda_2 t} \mathbf{x_2}}$ . Let  $f = Re(e^{\lambda_1 t} \mathbf{x_1})$  and  $g = Im(e^{\lambda_1 t} \mathbf{x_1})$ . Example:  $Re\begin{bmatrix} a+bi\\c+di\end{bmatrix} = \begin{bmatrix} a\\c \end{bmatrix}$  and  $Im\begin{bmatrix} a+bi\\c+di \end{bmatrix} = \begin{bmatrix} b\\d \end{bmatrix}$ .

Complex Eigenvalues: Closer Look You should be able to follow this explanation, but you don't have to memorize it

Suppose  $\lambda_1 = \overline{\lambda_2}$  and  $\mathbf{x}_1 = \overline{\mathbf{x}_2}$ .

Then 
$$e^{\lambda_1 t} \mathbf{x_1} = \overline{e^{\lambda_2 t} \mathbf{x_2}}$$
.  
Let  $f = Re(e^{\lambda_1 t} \mathbf{x_1})$  and  $g = Im(e^{\lambda_1 t} \mathbf{x_1})$ .  
Example:  $Re\begin{bmatrix} a+bi\\c+di\end{bmatrix} = \begin{bmatrix} a\\c\end{bmatrix}$  and  $Im\begin{bmatrix} a+bi\\c+di\end{bmatrix} = \begin{bmatrix} b\\d\end{bmatrix}$ .

$$c_{1}e^{\lambda_{1}t}\mathbf{x}_{1} + c_{2}e^{\lambda_{2}t}\mathbf{x}_{2} = c_{1}(f + gi) + c_{2}(f - gi)$$
  
=  $(c_{1} + c_{2})f + i(c_{1} - c_{2})g$   
=  $af + bg$   
=  $a \cdot \operatorname{Re}(e^{\lambda_{1}t}\mathbf{x}_{1}) + b \cdot \operatorname{Im}(e^{\lambda_{1}t}\mathbf{x}_{1})$ 

where a and b are arbitrary constants, possibly complex

# Complex Eigenvalues: Closer Look

$$\mathbf{y}'(t) = \begin{bmatrix} 0 & -2 \\ 8 & 0 \end{bmatrix} \mathbf{y}(t) \qquad \mathbf{y}(0) = \begin{bmatrix} -4 \\ 12 \end{bmatrix}$$

#### Complex Eigenvalues: Closer Look

$$\mathbf{y}'(t) = \begin{bmatrix} 0 & -2 \\ 8 & 0 \end{bmatrix} \mathbf{y}(t) \qquad \mathbf{y}(0) = \begin{bmatrix} -4 \\ 12 \end{bmatrix}$$

Eigenvalues:  $\lambda_1 = 4i$ ,  $\lambda_2 = -4i$ 

# Complex Eigenvalues: Closer Look

$$\mathbf{y}'(t) = \begin{bmatrix} 0 & -2 \\ 8 & 0 \end{bmatrix} \mathbf{y}(t) \qquad \mathbf{y}(0) = \begin{bmatrix} -4 \\ 12 \end{bmatrix}$$

Eigenvalues: 
$$\lambda_1 = 4i$$
,  $\lambda_2 = -4i$   
Eigenvectors:  $\mathbf{x_1} = \begin{bmatrix} i \\ 2 \end{bmatrix}$ ,  $\mathbf{x_2} = \begin{bmatrix} -i \\ 2 \end{bmatrix}$ 

#### Complex Eigenvalues: Closer Look

$$\mathbf{y}'(t) = \begin{bmatrix} 0 & -2 \\ 8 & 0 \end{bmatrix} \mathbf{y}(t) \qquad \mathbf{y}(0) = \begin{bmatrix} -4 \\ 12 \end{bmatrix}$$

Eigenvalues: 
$$\lambda_1 = 4i$$
,  $\lambda_2 = -4i$   
Eigenvectors:  $\mathbf{x_1} = \begin{bmatrix} i \\ 2 \end{bmatrix}$ ,  $\mathbf{x_2} = \begin{bmatrix} -i \\ 2 \end{bmatrix}$ 

General solution:

$$\mathbf{y}(t) = c_1 e^{4it} \mathbf{x}_1 + c_2 e^{-4it} \mathbf{x}_2$$
  
=  $c_1 e^{4it} \mathbf{x}_1 + c_2 \overline{e^{4it} \mathbf{x}_1}$   
=  $a \cdot \operatorname{Re}(e^{4it} \mathbf{x}_1) + b \cdot \operatorname{Im}(e^{4it} \mathbf{x}_1)$   
=  $a \begin{bmatrix} -2\sin(4t) \\ 4\cos(4t) \end{bmatrix} + b \begin{bmatrix} -2\cos(4t) \\ -4\sin(4t) \end{bmatrix}$ 

where a and b are arbitrary constants

#### Shorcut

Suppose we're solving  $\mathbf{y}' = A\mathbf{y}$ , and A has a complex pair of eigenvalues and eigenvectors  $\lambda_1 = \overline{\lambda_2}$ ,  $\mathbf{x}_1 = \overline{\mathbf{x}_2}$ .

To find the solutions corresponding to these eigenvalues and eigenvectors,  $c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2$  is equivalent to  $a \cdot \operatorname{Re}(e^{\lambda_1 t} \mathbf{x}_1) + b \cdot \operatorname{Im}(e^{\lambda_1 t} \mathbf{x}_1)$ . That is:

#### Shorcut

Suppose we're solving  $\mathbf{y}' = A\mathbf{y}$ , and A has a complex pair of eigenvalues and eigenvectors  $\lambda_1 = \overline{\lambda_2}$ ,  $\mathbf{x}_1 = \overline{\mathbf{x}_2}$ .

To find the solutions corresponding to these eigenvalues and eigenvectors,  $c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2$  is equivalent to  $a \cdot \operatorname{Re}(e^{\lambda_1 t} \mathbf{x}_1) + b \cdot \operatorname{Im}(e^{\lambda_1 t} \mathbf{x}_1)$ . That is:

1. Choose a single solution, like  $e^{\lambda_1 t} x_1$ 

#### Shorcut

Suppose we're solving  $\mathbf{y}' = A\mathbf{y}$ , and A has a complex pair of eigenvalues and eigenvectors  $\lambda_1 = \overline{\lambda_2}$ ,  $\mathbf{x}_1 = \overline{\mathbf{x}_2}$ .

To find the solutions corresponding to these eigenvalues and eigenvectors,  $c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2$  is equivalent to  $a \cdot \operatorname{Re}(e^{\lambda_1 t} \mathbf{x}_1) + b \cdot \operatorname{Im}(e^{\lambda_1 t} \mathbf{x}_1)$ . That is:

- 1. Choose a single solution, like  $e^{\lambda_1 t} x_1$
- 2. Separate it into its real and imaginary part

#### Shorcut

Suppose we're solving  $\mathbf{y}' = A\mathbf{y}$ , and A has a complex pair of eigenvalues and eigenvectors  $\lambda_1 = \overline{\lambda_2}$ ,  $\mathbf{x}_1 = \overline{\mathbf{x}_2}$ .

To find the solutions corresponding to these eigenvalues and eigenvectors,  $c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2$  is equivalent to  $a \cdot \operatorname{Re}(e^{\lambda_1 t} \mathbf{x}_1) + b \cdot \operatorname{Im}(e^{\lambda_1 t} \mathbf{x}_1)$ . That is:

- 1. Choose a single solution, like  $e^{\lambda_1 t} x_1$
- 2. Separate it into its real and imaginary part
- 3. The general solution is any linear combination of the real and imaginary part

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix};$$
 solve  $\mathbf{y}' = A\mathbf{y}$ 

#### **Complex Eigenvalues**

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}; \qquad \text{solve } \mathbf{y}' = A\mathbf{y}$$

Eigenvalues:  $\lambda_1 = 1 + i$ ,  $\lambda_2 = 1 - i$ 

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}; \qquad \text{solve } \mathbf{y}' = A\mathbf{y}$$

Eigenvalues: 
$$\lambda_1 = 1 + i$$
,  $\lambda_2 = 1 - i$   
Eigenvectors:  $\mathbf{x}_1 = \begin{bmatrix} -i \\ 1 \end{bmatrix}$ ,

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}; \qquad \text{solve } \mathbf{y}' = A\mathbf{y}$$

Eigenvalues: 
$$\lambda_1 = 1 + i$$
,  $\lambda_2 = 1 - i$   
Eigenvectors:  $\mathbf{x}_1 = \begin{bmatrix} -i \\ 1 \end{bmatrix}$ ,  $\mathbf{x}_2 = \begin{bmatrix} i \\ 1 \end{bmatrix}$ 

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}; \qquad \text{solve } \mathbf{y}' = A\mathbf{y}$$

Eigenvalues: 
$$\lambda_1 = 1 + i$$
,  $\lambda_2 = 1 - i$   
Eigenvectors:  $\mathbf{x}_1 = \begin{bmatrix} -i \\ 1 \end{bmatrix}$ ,  $\mathbf{x}_2 = \begin{bmatrix} i \\ 1 \end{bmatrix}$ One solution:

#### **Complex Eigenvalues**

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}; \qquad \text{solve } \mathbf{y}' = A\mathbf{y}$$

Eigenvalues:  $\lambda_1 = 1 + i$ ,  $\lambda_2 = 1 - i$ Eigenvectors:  $\mathbf{x}_1 = \begin{bmatrix} -i \\ 1 \end{bmatrix}$ ,  $\mathbf{x}_2 = \begin{bmatrix} i \\ 1 \end{bmatrix}$  One solution:

$$e^{(1+i)t} \begin{bmatrix} -i\\1 \end{bmatrix} = e^{t}e^{it} \begin{bmatrix} -i\\1 \end{bmatrix}$$
$$= e^{t}(\cos(t) + i\sin(t)) \begin{bmatrix} -i\\1 \end{bmatrix}$$
$$= \begin{bmatrix} e^{t}\sin t\\e^{t}\cos t \end{bmatrix} + i \begin{bmatrix} -e^{t}\cos t\\e^{t}\sin t \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}; \qquad \text{solve } \mathbf{y}' = A\mathbf{y}$$

Eigenvalues: 
$$\lambda_1 = 1 + i$$
,  $\lambda_2 = 1 - i$   
Eigenvectors:  $\mathbf{x}_1 = \begin{bmatrix} -i \\ 1 \end{bmatrix}$ ,  $\mathbf{x}_2 = \begin{bmatrix} i \\ 1 \end{bmatrix}$ One solution:

$$e^{(1+i)t} \begin{bmatrix} -i\\1 \end{bmatrix}$$
$$= \begin{bmatrix} e^{t} \sin t\\ e^{t} \cos t \end{bmatrix} + i \begin{bmatrix} -e^{t} \cos t\\ e^{t} \sin t \end{bmatrix}$$

#### **Complex Eigenvalues**

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}; \qquad \text{solve } \mathbf{y}' = A\mathbf{y}$$

Eigenvalues:  $\lambda_1 = 1 + i$ ,  $\lambda_2 = 1 - i$ Eigenvectors:  $\mathbf{x}_1 = \begin{bmatrix} -i \\ 1 \end{bmatrix}$ ,  $\mathbf{x}_2 = \begin{bmatrix} i \\ 1 \end{bmatrix}$  One solution:  $e^{(1+i)t} \begin{bmatrix} -i \\ 1 \end{bmatrix}$  $= \begin{bmatrix} e^t \sin t \\ e^t \cos t \end{bmatrix} + i \begin{bmatrix} -e^t \cos t \\ e^t \sin t \end{bmatrix}$ 

$$=c_1\begin{bmatrix}e^t\sin t\\e^t\cos t\end{bmatrix}+c_2\begin{bmatrix}-e^t\cos t\\e^t\sin t\end{bmatrix}$$

$$A = \begin{bmatrix} 0 & \frac{1}{4} \\ -5 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & \frac{1}{4} \\ -5 & -2 \end{bmatrix}$$
  
Eigenvalues:  $\lambda_1 = -1 + \frac{1}{2}i$ ,  $\lambda_2 = -1 - \frac{1}{2}i$ 

$$A = \begin{bmatrix} 0 & \frac{1}{4} \\ -5 & -2 \end{bmatrix}$$
  
Eigenvalues:  $\lambda_1 = -1 + \frac{1}{2}i$ ,  $\lambda_2 = -1 - \frac{1}{2}i$   
Eigenvectors:  $\mathbf{x}_1 = \begin{bmatrix} 2+i \\ -10 \end{bmatrix}$ ,  $\mathbf{x}_2 = \begin{bmatrix} 2-i \\ -10 \end{bmatrix}$ 

# **Complex Eigenvalues**

$$A = \begin{bmatrix} 0 & \frac{1}{4} \\ -5 & -2 \end{bmatrix}$$
  
Eigenvalues:  $\lambda_1 = -1 + \frac{1}{2}i$ ,  $\lambda_2 = -1 - \frac{1}{2}i$   
Eigenvectors:  $\mathbf{x}_1 = \begin{bmatrix} 2+i \\ -10 \end{bmatrix}$ ,  $\mathbf{x}_2 = \begin{bmatrix} 2-i \\ -10 \end{bmatrix}$ 

Choosing one:

$$e^{\lambda_{1}t}\mathbf{x}_{1} = e^{(-1+\frac{1}{2}i)t}\mathbf{x}_{1} = e^{-t}e^{it/2}\mathbf{x}_{1} = e^{-t}(\cos(t/2) + i\sin(t/2))\mathbf{x}_{1}$$
$$= e^{-t}(\cos(t/2) + i\sin(t/2))\begin{bmatrix}2+i\\-10\end{bmatrix}$$
$$= e^{-t}\begin{bmatrix}2\cos(t/2) - \sin(t/2)\\-10\cos(t/2)\end{bmatrix} + ie^{-t}\begin{bmatrix}\cos(t/2) + \sin(t/2)\\-10\sin(t/2)\end{bmatrix}$$

#### **Complex Eigenvalues**

$$A = \begin{bmatrix} 0 & \frac{1}{4} \\ -5 & -2 \end{bmatrix}$$
  
Eigenvalues:  $\lambda_1 = -1 + \frac{1}{2}i$ ,  $\lambda_2 = -1 - \frac{1}{2}i$   
Eigenvectors:  $\mathbf{x}_1 = \begin{bmatrix} 2+i \\ -10 \end{bmatrix}$ ,  $\mathbf{x}_2 = \begin{bmatrix} 2-i \\ -10 \end{bmatrix}$   
Choosing one:

$$e^{\lambda_1 t} \mathbf{x}_1 = e^{-t} \begin{bmatrix} 2\cos(t/2) - \sin(t/2) \\ -10\cos(t/2) \end{bmatrix} + ie^{-t} \begin{bmatrix} \cos(t/2) + \sin(t/2) \\ -10\sin(t/2) \end{bmatrix}$$

$$\frac{c_1}{e^t} \begin{bmatrix} 2\cos(t/2) - \sin(t/2) \\ -10\cos(t/2) \end{bmatrix} + \frac{c_2}{e^t} \begin{bmatrix} \cos(t/2) + \sin(t/2) \\ -10\sin(t/2) \end{bmatrix}$$

#### End Behaviour



$$\begin{split} \lambda &= i & c(\cos t + i \sin t) \mathbf{x} & \text{oscillating} \\ \lambda &= 1 + i & ce^{t}(\cos t + i \sin t) \mathbf{x} & \text{oscillating, growing} \\ \lambda &= -1 + i & ce^{-t}(\cos t + i \sin t) \mathbf{x} & \text{oscillating, decaying} \end{split}$$

# **Bigger Matrices**

$$\mathbf{y}' = egin{bmatrix} 1 & 1 & 0 \ -1 & 1 & 0 \ 0 & 0 & 0 \end{bmatrix} \mathbf{y}$$

# **Bigger Matrices**

$$\mathbf{y}' = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{y}$$

$$\lambda_1 = 0 \qquad \lambda_2 = 1 + i \qquad \lambda_3 = 1 - i$$
$$\mathbf{x}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \mathbf{x}_2 = \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} \qquad \mathbf{x}_3 = \begin{bmatrix} 1 \\ -i \\ 0 \end{bmatrix}$$

### **Bigger Matrices**

$$\lambda_1 = 0 \qquad \lambda_2 = 1 + i \qquad \lambda_3 = 1 - i$$
$$\mathbf{x}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \mathbf{x}_2 = \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} \qquad \mathbf{x}_3 = \begin{bmatrix} 1 \\ -i \\ 0 \end{bmatrix}$$

$$c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + c_3 e^{\lambda_3 t} \mathbf{x}_3$$

### **Bigger Matrices**

$$\lambda_1 = 0 \qquad \lambda_2 = 1 + i \qquad \lambda_3 = 1 - i$$
$$\mathbf{x}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \mathbf{x}_2 = \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} \qquad \mathbf{x}_3 = \begin{bmatrix} 1 \\ -i \\ 0 \end{bmatrix}$$

$$c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + c_3 e^{\lambda_3 t} \mathbf{x}_3$$

### **Bigger Matrices**

$$\lambda_{1} = 0 \qquad \lambda_{2} = 1 + i \qquad \lambda_{3} = 1 - i$$
$$\mathbf{x}_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \mathbf{x}_{2} = \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} \qquad \mathbf{x}_{3} = \begin{bmatrix} 1 \\ -i \\ 0 \end{bmatrix}$$

$$c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + c_3 e^{\lambda_3 t} \mathbf{x}_3$$

$$e^{\lambda_1 t} \mathbf{x}_1 = e^{0t} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

### **Bigger Matrices**

$$\lambda_1 = 0 \qquad \lambda_2 = 1 + i \qquad \lambda_3 = 1 - i$$
$$\mathbf{x}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \mathbf{x}_2 = \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} \qquad \mathbf{x}_3 = \begin{bmatrix} 1 \\ -i \\ 0 \end{bmatrix}$$

$$c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + c_3 e^{\lambda_3 t} \mathbf{x}_3$$

#### **Bigger Matrices**

$$\lambda_{1} = 0 \qquad \lambda_{2} = 1 + i \qquad \lambda_{3} = 1 - i$$
$$\mathbf{x}_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \mathbf{x}_{2} = \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} \qquad \mathbf{x}_{3} = \begin{bmatrix} 1 \\ -i \\ 0 \end{bmatrix}$$
Concert Solution:

General Solution:

$$c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + c_3 e^{\lambda_3 t} \mathbf{x}_3$$

We get to use our shortcut, because  $x_1$  and  $x_2$  are complex conjugates of one another.

$$e^{\lambda_{2}t}\mathbf{x}_{2} = e^{(1+i)t} \begin{bmatrix} 1\\i\\0 \end{bmatrix} = e^{t}e^{it} \begin{bmatrix} 1\\i\\0 \end{bmatrix}$$
$$= e^{t}(\cos t + i\sin t) \begin{bmatrix} 1\\i\\0 \end{bmatrix} = \begin{bmatrix} e^{t}\cos t\\-e^{t}\sin t\\0 \end{bmatrix} + i \begin{bmatrix} e^{t}\sin t\\e^{t}\cos t\\0 \end{bmatrix}$$

# **Bigger Matrices**

$$\lambda_{1} = 0 \qquad \lambda_{2} = 1 + i \qquad \lambda_{3} = 1 - i$$
$$\mathbf{x}_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \mathbf{x}_{2} = \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} \qquad \mathbf{x}_{3} = \begin{bmatrix} 1 \\ -i \\ 0 \end{bmatrix}$$

$$c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + c_3 e^{\lambda_3 t} \mathbf{x}_3$$

$$\mathbf{y} = c_1 \begin{bmatrix} 0\\0\\1 \end{bmatrix} + c_2 \begin{bmatrix} e^t \cos t\\-e^t \sin t\\0 \end{bmatrix} + c_3 \begin{bmatrix} e^t \sin t\\e^t \cos t\\0 \end{bmatrix}$$
$$= \begin{bmatrix} c_2 e^t \cos t + c_3 e^t \sin t\\-c_2 e^t \sin t + c_3 e^t \cos t\\c_1 \end{bmatrix}$$

$$\begin{array}{rcl} y_1'(t) &=& 3y_1(t) + 0y_2(t) + 0y_3(t) \\ y_2'(t) &=& 0y_1(t) + 2y_2(t) - 4y_3(t) \\ y_3'(t) &=& 0y_1(t) + 1y_2(t) + 2y_3(t) \end{array}$$

$$y'_{1}(t) = 3y_{1}(t) + 0y_{2}(t) + 0y_{3}(t)$$
  

$$y'_{2}(t) = 0y_{1}(t) + 2y_{2}(t) - 4y_{3}(t)$$
  

$$y'_{3}(t) = 0y_{1}(t) + 1y_{2}(t) + 2y_{3}(t)$$
  

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & -4 \\ 0 & 1 & 2 \end{bmatrix}, \qquad \lambda_{1} = 3, \ \lambda_{2} = 2 + 2i, \ \lambda_{3} = 2 - 2i$$

$$y'_{1}(t) = 3y_{1}(t) + 0y_{2}(t) + 0y_{3}(t)$$
$$y'_{2}(t) = 0y_{1}(t) + 2y_{2}(t) - 4y_{3}(t)$$
$$y'_{3}(t) = 0y_{1}(t) + 1y_{2}(t) + 2y_{3}(t)$$
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & -4 \\ 0 & 1 & 2 \end{bmatrix}, \qquad \lambda_{1} = 3, \ \lambda_{2} = 2 + 2i, \ \lambda_{3} = 2 - 2i$$
$$\mathbf{x}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{x}_{2} = \begin{bmatrix} 0 \\ 2 \\ -i \end{bmatrix}, \ \mathbf{x}_{3} = \begin{bmatrix} 0 \\ 2 \\ i \end{bmatrix}$$

$$y'_{1}(t) = 3y_{1}(t) + 0y_{2}(t) + 0y_{3}(t)$$
  

$$y'_{2}(t) = 0y_{1}(t) + 2y_{2}(t) - 4y_{3}(t)$$
  

$$y'_{3}(t) = 0y_{1}(t) + 1y_{2}(t) + 2y_{3}(t)$$
  

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & -4 \\ 0 & 1 & 2 \end{bmatrix}, \qquad \lambda_{1} = 3, \ \lambda_{2} = 2 + 2i, \ \lambda_{3} = 2 - 2i$$
  

$$\mathbf{x}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{x}_{2} = \begin{bmatrix} 0 \\ 2 \\ -i \end{bmatrix}, \ \mathbf{x}_{3} = \begin{bmatrix} 0 \\ 2 \\ i \end{bmatrix}$$

$$\begin{bmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{bmatrix} = c_1 e^{3t} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 2e^{2t}\cos(2t) \\ e^{2t}\sin(2t) \end{bmatrix} + c_3 \begin{bmatrix} 0 \\ 2e^{2t}\sin(2t) \\ -e^{2t}\cos(2t) \end{bmatrix}$$