Outline

Week 12: Vector differential equations

Course Notes: 6.3

Goals: be able to solve a linear system of differential equations; find characteristics of electrical networks involving inductors and capacitors using methods learned this term.

Differential Equations

We're going to doing this in a linear-systems context soon.

$$
y^{\prime}(t)=\lambda y(t), \quad \lambda \text { constant }
$$

Differential Equations

We're going to doing this in a linear-systems context soon.

$$
y^{\prime}(t)=\lambda y(t), \quad \lambda \text { constant }
$$

Solutions: $y(t)=C e^{\lambda t}$, constant C

Differential Equations

We're going to doing this in a linear-systems context soon.

$$
y^{\prime}(t)=\lambda y(t), \quad \lambda \text { constant }
$$

Solutions: $y(t)=C e^{\lambda t}$, constant C
Example: a population's growth rate is 0.3 times the number of individuals in that population per year.

Differential Equations

We're going to doing this in a linear-systems context soon.

$$
y^{\prime}(t)=\lambda y(t), \quad \lambda \text { constant }
$$

Solutions: $y(t)=C e^{\lambda t}$, constant C
Example: a population's growth rate is 0.3 times the number of individuals in that population per year.

$$
y^{\prime}(t)=0.3 y(t)
$$

Differential Equations

We're going to doing this in a linear-systems context soon.

$$
y^{\prime}(t)=\lambda y(t), \quad \lambda \text { constant }
$$

Solutions: $y(t)=C e^{\lambda t}$, constant C
Example: a population's growth rate is 0.3 times the number of individuals in that population per year.

$$
\begin{gathered}
y^{\prime}(t)=0.3 y(t) \\
y(t)=C e^{0.3 t} \quad \text { for some constant } C
\end{gathered}
$$

Differential Equations

We're going to doing this in a linear-systems context soon.

$$
y^{\prime}(t)=\lambda y(t), \quad \lambda \text { constant }
$$

Solutions: $y(t)=C e^{\lambda t}$, constant C
Example: a population's growth rate is 0.3 times the number of individuals in that population per year.

$$
\begin{gathered}
y^{\prime}(t)=0.3 y(t) \\
y(t)=C e^{0.3 t} \quad \text { for some constant } C
\end{gathered}
$$

At year $t=0$, there are 100 individuals.

Differential Equations

We're going to doing this in a linear-systems context soon.

$$
y^{\prime}(t)=\lambda y(t), \quad \lambda \text { constant }
$$

Solutions: $y(t)=C e^{\lambda t}$, constant C
Example: a population's growth rate is 0.3 times the number of individuals in that population per year.

$$
\begin{gathered}
y^{\prime}(t)=0.3 y(t) \\
y(t)=C e^{0.3 t} \quad \text { for some constant } C
\end{gathered}
$$

At year $t=0$, there are 100 individuals.

$$
y(t)=100 e^{0.3 t}
$$

Differential Equations

Example: a radioactive substance decays at a rate of 2% of its mass every year.

Differential Equations

Example: a radioactive substance decays at a rate of 2% of its mass every year.

$$
y^{\prime}(t)=-0.02 y(t)
$$

Differential Equations

Example: a radioactive substance decays at a rate of 2% of its mass every year.

$$
y^{\prime}(t)=-0.02 y(t)
$$

$$
y(t)=C e^{-0.02 t} \quad \text { where } C \text { is the amount at } t=0
$$

Systems of Linear Differential Equations

$$
\begin{aligned}
y_{1}^{\prime}(t) & =\boldsymbol{a} y_{1}(t)+\boldsymbol{b} y_{2}(t) \\
y_{2}^{\prime}(t) & =\boldsymbol{c} y_{1}(t)+\boldsymbol{d} y_{2}(t)
\end{aligned}
$$

Systems of Linear Differential Equations

$$
\begin{aligned}
y_{1}^{\prime}(t) & =\boldsymbol{a} y_{1}(t)+\boldsymbol{b} y_{2}(t) \\
y_{2}^{\prime}(t) & =\boldsymbol{c} y_{1}(t)+\boldsymbol{d} y_{2}(t)
\end{aligned}
$$

Example: y_{1} population of lynx, y_{2} population of hares

Systems of Linear Differential Equations

$$
\begin{aligned}
& y_{1}^{\prime}(t)=\boldsymbol{a} y_{1}(t)+\boldsymbol{b} y_{2}(t) \\
& y_{2}^{\prime}(t)=\boldsymbol{c} y_{1}(t)+\boldsymbol{d} y_{2}(t)
\end{aligned}
$$

Example: y_{1} population of lynx, y_{2} population of hares

$$
\begin{gathered}
\mathbf{y}^{\prime}:=\left[\begin{array}{l}
y_{1}^{\prime}(t) \\
y_{2}^{\prime}(t)
\end{array}\right] \quad A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \mathbf{y}:=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right] \\
\mathbf{y}^{\prime}=A \mathbf{y}
\end{gathered}
$$

Systems of Linear Differential Equations

$$
\begin{aligned}
& y_{1}^{\prime}(t)=\boldsymbol{a} y_{1}(t)+\boldsymbol{b} y_{2}(t) \\
& y_{2}^{\prime}(t)=\boldsymbol{c} y_{1}(t)+\boldsymbol{d} y_{2}(t)
\end{aligned}
$$

Example: y_{1} population of lynx, y_{2} population of hares

$$
\begin{gathered}
\mathbf{y}^{\prime}:=\left[\begin{array}{l}
y_{1}^{\prime}(t) \\
y_{2}^{\prime}(t)
\end{array}\right] \quad A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \mathbf{y}:=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right] \\
\mathbf{y}^{\prime}=A \mathbf{y}
\end{gathered}
$$

Note: there isn't something weird going on with "differentiating a vector." We're just differentiating each (totally standard) equation inside the vector.

Guessing Solutions: Eigenvectors

Differential Equation:

$$
\mathbf{y}^{\prime}=A \mathbf{y}
$$

Let's take a guess from our previous examples: what if

$$
\left[\begin{array}{c}
y_{1}(t) \\
y_{2}(t) \\
\vdots \\
y_{n}(t)
\end{array}\right]=\mathbf{y}=e^{\lambda t} \mathbf{x}=\left[\begin{array}{c}
x_{1} e^{\lambda t} \\
x_{2} e^{\lambda t} \\
\vdots \\
x_{n} e^{\lambda t}
\end{array}\right]
$$

for some constant λ and some constant vector \mathbf{x} ?

Guessing Solutions: Eigenvectors

Differential Equation:

$$
\mathbf{y}^{\prime}=A \mathbf{y}
$$

Let's take a guess from our previous examples: what if

$$
\left[\begin{array}{c}
y_{1}(t) \\
y_{2}(t) \\
\vdots \\
y_{n}(t)
\end{array}\right]=\mathbf{y}=e^{\lambda t} \mathbf{x}=\left[\begin{array}{c}
x_{1} e^{\lambda t} \\
x_{2} e^{\lambda t} \\
\vdots \\
x_{n} e^{\lambda t}
\end{array}\right]
$$

for some constant λ and some constant vector \mathbf{x} ?

Then:

$$
\text { So, if } \mathbf{y}^{\prime}=A \mathbf{y} \text { : }
$$

$$
\begin{aligned}
\mathbf{y}^{\prime} & =\lambda e^{\lambda t} \mathbf{x} \\
\lambda e^{\lambda t} \mathbf{x} & =A\left(e^{\lambda t} \mathbf{x}\right) \\
\lambda \mathbf{x} & =A \mathbf{x}
\end{aligned}
$$

Hence:
so λ and \mathbf{x} are an eigenvalue/eigenvector pair of A.

Guessing Solutions: Eigenvectors

Differential Equation:

$$
\mathbf{y}^{\prime}=A \mathbf{y}
$$

Let's take a guess from our previous examples: what if

$$
\left[\begin{array}{c}
y_{1}(t) \\
y_{2}(t) \\
\vdots \\
y_{n}(t)
\end{array}\right]=\mathbf{y}=e^{\lambda t} \mathbf{x}=\left[\begin{array}{c}
x_{1} e^{\lambda t} \\
x_{2} e^{\lambda t} \\
\vdots \\
x_{n} e^{\lambda t}
\end{array}\right]
$$

for some constant λ and some constant vector \mathbf{x} ?

We've successfully guessed a solution!

$$
\mathbf{y}=e^{\lambda t} \mathbf{x}
$$

where λ, \mathbf{x} are an eigenvalue/eigenvector pair of A

Systems of Linear Differential Equations: Adding Solutions

Adding Solutions

Suppose \mathbf{y}_{1} and \mathbf{y}_{2} are both solutions to the system of differential equations $A \mathbf{y}=\mathbf{y}^{\prime}$.

Systems of Linear Differential Equations: Adding Solutions

Adding Solutions

Suppose \mathbf{y}_{1} and \mathbf{y}_{2} are both solutions to the system of differential equations $A \mathbf{y}=\mathbf{y}^{\prime}$. Then $\left(\mathbf{y}_{1}+\mathbf{y}_{2}\right)$ is also a solution.

Systems of Linear Differential Equations: Adding Solutions

Adding Solutions

Suppose \mathbf{y}_{1} and \mathbf{y}_{2} are both solutions to the system of differential equations $A \mathbf{y}=\mathbf{y}^{\prime}$. Then $\left(\mathbf{y}_{1}+\mathbf{y}_{2}\right)$ is also a solution.

Further, $\left(c_{1} \mathbf{y}_{1}+c_{2} \mathbf{y}_{2}\right)$ is also a solution, for any constants c_{1} and c_{2}.
(Home exercise: prove this is true!)

Solutions to Systems of Linear Differential Equations

Theorem

Suppose A is an n-by- n matrix with eigenvalues and vectors $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$. Then for any choice of constants $c_{1}, c_{2}, \ldots, c_{k}$,

$$
\mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{k} e^{\lambda_{k} t} \mathbf{x}_{k}
$$

is a solution to the equation $\mathbf{y}^{\prime}=A \mathbf{y}$.

Solutions to Systems of Linear Differential Equations

Theorem

Suppose A is an n-by- n matrix with eigenvalues and vectors $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$. Then for any choice of constants $c_{1}, c_{2}, \ldots, c_{k}$,

$$
\mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{k} e^{\lambda_{k} t} \mathbf{x}_{k}
$$

is a solution to the equation $\mathbf{y}^{\prime}=A \mathbf{y}$.
Example: $\mathbf{y}^{\prime}=\mathbf{l y}, \mathbf{y} \in \mathbb{R}^{2}$

Solutions to Systems of Linear Differential Equations

Theorem

Suppose A is an n-by- n matrix with eigenvalues and vectors $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$. Then for any choice of constants $c_{1}, c_{2}, \ldots, c_{k}$,

$$
\mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{k} e^{\lambda_{k} t} \mathbf{x}_{k}
$$

is a solution to the equation $\mathbf{y}^{\prime}=A \mathbf{y}$.
Example: $\mathbf{y}^{\prime}=\mathbf{l y}, \mathbf{y} \in \mathbb{R}^{2}$
$\lambda_{1}=1, \mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right] ;$

$$
\lambda_{2}=1, \mathbf{x}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Solutions to Systems of Linear Differential Equations

Theorem

Suppose A is an n-by- n matrix with eigenvalues and vectors $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$. Then for any choice of constants $c_{1}, c_{2}, \ldots, c_{k}$,

$$
\mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{k} e^{\lambda_{k} t} \mathbf{x}_{k}
$$

is a solution to the equation $\mathbf{y}^{\prime}=A \mathbf{y}$.
Example: $\mathbf{y}^{\prime}=\mathbf{l y}, \mathbf{y} \in \mathbb{R}^{2}$
$\lambda_{1}=1, \mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$;

$$
\lambda_{2}=1, \mathbf{x}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$\mathbf{y}(t)=c_{1} e^{t}\left[\begin{array}{l}1 \\ 0\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

Solutions to Systems of Linear Differential Equations

Theorem

Suppose A is an n-by- n matrix with eigenvalues and vectors $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$. Then for any choice of constants $c_{1}, c_{2}, \ldots, c_{k}$,

$$
\mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{k} e^{\lambda_{k} t} \mathbf{x}_{k}
$$

is a solution to the equation $\mathbf{y}^{\prime}=A \mathbf{y}$.
General Question: Is there a solution to $\mathbf{y}^{\prime}=A \mathbf{y}$ that also has $\mathbf{y}(0)=\mathbf{y}_{0}$, for some constant vector \mathbf{y}_{0} ?

Solutions to Systems of Linear Differential Equations

Theorem

Suppose A is an n-by- n matrix with eigenvalues and vectors $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$. Then for any choice of constants $c_{1}, c_{2}, \ldots, c_{k}$,

$$
\mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{k} e^{\lambda_{k} t} \mathbf{x}_{k}
$$

is a solution to the equation $\mathbf{y}^{\prime}=A \mathbf{y}$.
General Question: Is there a solution to $\mathbf{y}^{\prime}=A \mathbf{y}$ that also has $\mathbf{y}(0)=\mathbf{y}_{0}$, for some constant vector \mathbf{y}_{0} ? Suppose it has the form above:

$$
\mathbf{y}(0)=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{k} \mathbf{x}_{k} ?=? \mathbf{y}_{0}
$$

Solutions to Systems of Linear Differential Equations

Theorem

Suppose A is an n-by- n matrix with eigenvalues and vectors $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$. Then for any choice of constants $c_{1}, c_{2}, \ldots, c_{k}$,

$$
\mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{k} e^{\lambda_{k} t} \mathbf{x}_{k}
$$

is a solution to the equation $\mathbf{y}^{\prime}=A \mathbf{y}$.
General Question: Is there a solution to $\mathbf{y}^{\prime}=A \mathbf{y}$ that also has $\mathbf{y}(0)=\mathbf{y}_{0}$, for some constant vector \mathbf{y}_{0} ? Suppose it has the form above:

$$
\mathbf{y}(0)=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{k} \mathbf{x}_{k} ?=?{ }^{?} \mathbf{y}_{0}
$$

If the eigenvectors of A form a basis then there is always exactly one solution to $\mathbf{y}^{\prime}=A \mathbf{y}$ with any desired initial condition $\mathbf{y}(0)=\mathbf{y}_{0}$, and it has the form given above.

Solutions to Systems of Linear Differential Equations

Theorem

Suppose A is an n-by- n matrix with eigenvalues and vectors $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$. Then for any choice of constants $c_{1}, c_{2}, \ldots, c_{k}$,

$$
\mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{k} e^{\lambda_{k} t} \mathbf{x}_{k}
$$

is a solution to the equation $\mathbf{y}^{\prime}=A \mathbf{y}$.
Example: $\mathbf{y}^{\prime}=\mathbf{l y}, \mathbf{y} \in \mathbb{R}^{2}$
$\lambda_{1}=1, \mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right] ;$

$$
\lambda_{2}=1, \mathbf{x}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Solutions to Systems of Linear Differential Equations

Theorem

Suppose A is an n-by- n matrix with eigenvalues and vectors $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$. Then for any choice of constants $c_{1}, c_{2}, \ldots, c_{k}$,

$$
\mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{k} e^{\lambda_{k} t} \mathbf{x}_{k}
$$

is a solution to the equation $\mathbf{y}^{\prime}=A \mathbf{y}$.
Example: $\mathbf{y}^{\prime}=\mathbf{l y}, \mathbf{y} \in \mathbb{R}^{2}$
$\lambda_{1}=1, \mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right] ;$

$$
\lambda_{2}=1, \mathbf{x}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Suppose we have initial conditions $\mathbf{y}(0)=\left[\begin{array}{c}7 \\ -3\end{array}\right]$.

Solutions to Systems of Linear Differential Equations

Theorem

Suppose A is an n-by- n matrix with eigenvalues and vectors $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$. Then for any choice of constants $c_{1}, c_{2}, \ldots, c_{k}$,

$$
\mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{k} e^{\lambda_{k} t} \mathbf{x}_{k}
$$

is a solution to the equation $\mathbf{y}^{\prime}=A \mathbf{y}$.
Example: $\mathbf{y}^{\prime}=\mathbf{l y}, \mathbf{y} \in \mathbb{R}^{2}$
$\lambda_{1}=1, \mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right] ;$

$$
\lambda_{2}=1, \mathbf{x}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Suppose we have initial conditions $\mathbf{y}(0)=\left[\begin{array}{c}7 \\ -3\end{array}\right]$.
$\mathbf{y}=7 e^{t}\left[\begin{array}{l}1 \\ 0\end{array}\right]-3 e^{t}\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}7 e^{t} \\ -3 e^{t}\end{array}\right]$.

Example

Find the solution to the system of linear differential equations

$$
\begin{aligned}
y_{1}^{\prime}(t) & =y_{1}(t)+4 y_{2}(t)+5 y_{3}(t) \\
y_{2}^{\prime}(t) & = \\
y_{3}^{\prime}(t) & =
\end{aligned}
$$

with initial condition

$$
\mathbf{y}(0)=\left[\begin{array}{c}
0 \\
11 \\
2
\end{array}\right]
$$

Example

Find the solution to the system of linear differential equations

$$
\begin{aligned}
y_{1}^{\prime}(t) & =y_{1}(t)+4 y_{2}(t)+5 y_{3}(t) \\
y_{2}^{\prime}(t) & = \\
y_{3}^{\prime}(t) & =
\end{aligned}
$$

with initial condition

$$
\mathbf{y}(0)=\left[\begin{array}{c}
0 \\
11 \\
2
\end{array}\right]
$$

$$
A=\left[\begin{array}{lll}
1 & 4 & 5 \\
0 & 2 & 6 \\
0 & 0 & 3
\end{array}\right]
$$

$$
\text { solving } \mathbf{y}^{\prime}=A \mathbf{y}
$$

Example

Find the solution to the system of linear differential equations

$$
\begin{aligned}
y_{1}^{\prime}(t) & =y_{1}(t)+4 y_{2}(t)+5 y_{3}(t) \\
y_{2}^{\prime}(t) & = \\
y_{3}^{\prime}(t) & =
\end{aligned}
$$

with initial condition

$$
\mathbf{y}(0)=\left[\begin{array}{c}
0 \\
11 \\
2
\end{array}\right]
$$

$$
A=\left[\begin{array}{lll}
1 & 4 & 5 \\
0 & 2 & 6 \\
0 & 0 & 3
\end{array}\right] \quad \text { solving } \mathbf{y}^{\prime}=A \mathbf{y}
$$

$$
\lambda_{1}=1, \mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \lambda_{2}=2, \mathbf{x}_{2}=\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right] \quad \lambda_{3}=3, \mathbf{x}_{3}=\left[\begin{array}{c}
29 \\
12 \\
2
\end{array}\right]
$$

The form of the solution will be:

$$
\mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{k} e^{\lambda_{k} t} \mathbf{x}_{k}
$$

That is:

$$
\mathbf{y}(t)=c_{1} e^{t}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right]+c_{3} e^{3 t}\left[\begin{array}{c}
29 \\
12 \\
2
\end{array}\right]
$$

To find the constants c_{1}, c_{2}, c_{3} we solve:

$$
\left[\begin{array}{c}
0 \\
11 \\
2
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
29 \\
12 \\
2
\end{array}\right]
$$

So $c_{1}=-25, c_{2}=-1$, and $c_{3}=1$. Our solution is:

$$
\mathbf{y}(t)=-25 e^{t}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-1 e^{2 t}\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right]+e^{3 t}\left[\begin{array}{c}
29 \\
12 \\
2
\end{array}\right]=\left[\begin{array}{c}
{\left[\begin{array}{c}
-25 e^{t}-4 e^{2 t}+29 e^{3 t} \\
-e^{2 t}+12 e^{3 t} \\
2 e^{3 t}
\end{array}\right]}
\end{array}\right.
$$

Example

Find the solution to the system of linear differential equations

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t) \\
& y_{2}^{\prime}(t)=3 y_{1}(t)-y_{2}(t)
\end{aligned}
$$

with initial condition

$$
\mathbf{y}(0)=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

Example

Find the solution to the system of linear differential equations

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t) \\
& y_{2}^{\prime}(t)=3 y_{1}(t)-y_{2}(t)
\end{aligned}
$$

with initial condition

$$
\mathbf{y}(0)=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
1 & 0 \\
3 & -1
\end{array}\right]
$$

Example

Find the solution to the system of linear differential equations

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t) \\
& y_{2}^{\prime}(t)=3 y_{1}(t)-y_{2}(t)
\end{aligned}
$$

with initial condition

$$
\mathbf{y}(0)=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
1 & 0 \\
3 & -1
\end{array}\right] \quad \lambda_{1}=1, \mathrm{x}_{1}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \quad \lambda_{2}=-1, \mathrm{x}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The form of the solution will be:

$$
\mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{k} e^{\lambda_{k} t} \mathbf{x}_{k}
$$

That is:

$$
\mathbf{y}(t)=c_{1} e^{t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

To find the constants c_{1}, c_{2} we solve:

$$
\left[\begin{array}{l}
4 \\
1
\end{array}\right]=c_{1}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

So $c_{1}=2, c_{2}=-5$. Our solution is:

$$
\mathbf{y}(t)=2 e^{t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]-5 e^{-t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
4 e^{t} \\
6 e^{t}-5 e^{-t}
\end{array}\right]
$$

Quick Recap

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t)+2 y_{2}(t) \\
& y_{2}^{\prime}(t)=y_{1}(t)+2 y_{2}(t)
\end{aligned} \quad ; \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

Quick Recap

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t)+2 y_{2}(t) \\
& y_{2}^{\prime}(t)=y_{1}(t)+2 y_{2}(t)
\end{aligned} \quad ; \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

1. Create the matrix of coefficients

Quick Recap

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t)+2 y_{2}(t) \\
& y_{2}^{\prime}(t)=y_{1}(t)+2 y_{2}(t)
\end{aligned} \quad ; \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

1. Create the matrix of coefficients

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]
$$

Quick Recap

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t)+2 y_{2}(t) \\
& y_{2}^{\prime}(t)=y_{1}(t)+2 y_{2}(t)
\end{aligned} \quad ; \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

1. Create the matrix of coefficients

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]
$$

2. Find eigenvalues and corresponding eigenvectors

Quick Recap

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t)+2 y_{2}(t) \\
& y_{2}^{\prime}(t)=y_{1}(t)+2 y_{2}(t)
\end{aligned} \quad ; \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

1. Create the matrix of coefficients

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]
$$

2. Find eigenvalues and corresponding eigenvectors

$$
\lambda_{1}=0,\left[\begin{array}{ll}
-2 & 1
\end{array}\right]^{\top} ; \quad \lambda_{2}=3,\left[\begin{array}{ll}
1 & 1
\end{array}\right]^{\top}
$$

Quick Recap

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t)+2 y_{2}(t) \\
& y_{2}^{\prime}(t)=y_{1}(t)+2 y_{2}(t)
\end{aligned} \quad ; \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

1. Create the matrix of coefficients

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]
$$

2. Find eigenvalues and corresponding eigenvectors

$$
\lambda_{1}=0,\left[\begin{array}{ll}
-2 & 1
\end{array}\right]^{\top} ; \quad \lambda_{2}=3,\left[\begin{array}{ll}
1 & 1
\end{array}\right]^{\top}
$$

3. The general solution is $\mathbf{y}=c_{1} e^{\lambda_{1} t} \mathbf{x}_{\mathbf{1}}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{\mathbf{2}}+\cdots c_{n} e^{\lambda_{n} t} \mathbf{x}_{\mathbf{n}}$

Quick Recap

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t)+2 y_{2}(t) \\
& y_{2}^{\prime}(t)=y_{1}(t)+2 y_{2}(t)
\end{aligned} \quad ; \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

1. Create the matrix of coefficients

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]
$$

2. Find eigenvalues and corresponding eigenvectors

$$
\lambda_{1}=0,\left[\begin{array}{ll}
-2 & 1
\end{array}\right]^{\top} ; \quad \lambda_{2}=3,\left[\begin{array}{ll}
1 & 1
\end{array}\right]^{\top}
$$

3. The general solution is $\mathbf{y}=c_{1} e^{\lambda_{1} t} \mathbf{x}_{\mathbf{1}}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{\mathbf{2}}+\cdots c_{n} e^{\lambda_{n} t} \mathbf{x}_{\mathbf{n}}$

$$
\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-2 \\
1
\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Quick Recap

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t)+2 y_{2}(t) \\
& y_{2}^{\prime}(t)=y_{1}(t)+2 y_{2}(t)
\end{aligned} \quad ; \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

1. Create the matrix of coefficients

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]
$$

2. Find eigenvalues and corresponding eigenvectors

$$
\lambda_{1}=0,\left[\begin{array}{ll}
-2 & 1
\end{array}\right]^{\top} ; \quad \lambda_{2}=3,\left[\begin{array}{ll}
1 & 1
\end{array}\right]^{\top}
$$

3. The general solution is $\mathbf{y}=c_{1} e^{\lambda_{1} t} \mathbf{x}_{\mathbf{1}}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{\mathbf{2}}+\cdots c_{n} e^{\lambda_{n} t} \mathbf{x}_{\mathbf{n}}$

$$
\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-2 \\
1
\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

4. Find the values of c_{i} that fit the initial conditions. That gives you the particular solution.

Quick Recap

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t)+2 y_{2}(t) \\
& y_{2}^{\prime}(t)=y_{1}(t)+2 y_{2}(t)
\end{aligned} \quad ; \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

1. Create the matrix of coefficients

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]
$$

2. Find eigenvalues and corresponding eigenvectors

$$
\lambda_{1}=0,\left[\begin{array}{ll}
-2 & 1
\end{array}\right]^{\top} ; \quad \lambda_{2}=3,\left[\begin{array}{ll}
1 & 1
\end{array}\right]^{\top}
$$

3. The general solution is $\mathbf{y}=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots c_{n} e^{\lambda_{n} t} \mathbf{x}_{\mathbf{n}}$

$$
\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-2 \\
1
\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

4. Find the values of c_{i} that fit the initial conditions. That gives you the particular solution.

$$
\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]+2 e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2+2 e^{3 t} \\
1+2 e^{3 t}
\end{array}\right]
$$

More Practice

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t)+4 y_{2}(t) \\
& y_{2}^{\prime}(t)=3 y_{1}(t)+5 y_{2}(t)
\end{aligned}
$$

$$
\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{c}
-8 \\
4
\end{array}\right]
$$

More Practice

$$
\begin{aligned}
y_{1}^{\prime}(t) & =y_{1}(t)+4 y_{2}(t) \\
y_{2}^{\prime}(t) & =3 y_{1}(t)+5 y_{2}(t)
\end{aligned} \quad ; \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{c}
-8 \\
4
\end{array}\right]
$$

More Practice

$$
\begin{aligned}
y_{1}^{\prime}(t) & =y_{1}(t)+4 y_{2}(t) \\
y_{2}^{\prime}(t) & 3 y_{1}(t)+5 y_{2}(t)
\end{aligned} \quad ; \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{c}
-8 \\
4
\end{array}\right]
$$

More Practice

$$
\begin{array}{rll}
y_{1}^{\prime}(t)= & y_{1}(t)+4 y_{2}(t) \\
y_{2}^{\prime}(t) & 3 y_{1}(t)+5 y_{2}(t) \\
A=\left[\begin{array}{lr}
1 & 4 \\
3 & 5
\end{array}\right] ; & \lambda_{1}=7, \mathrm{x}_{1}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{c}
-8 \\
4
\end{array}\right]
\end{array}
$$

General solution:

$$
\mathbf{y}(t)=c_{1} e^{7 t} \mathbf{x}_{2}+c_{2} e^{-t} \mathbf{x}_{2}
$$

More Practice

$$
\begin{array}{rll}
y_{1}^{\prime}(t)= & y_{1}(t)+4 y_{2}(t) \\
y_{2}^{\prime}(t) & 3 y_{1}(t)+5 y_{2}(t) \\
A=\left[\begin{array}{ll}
1 & 4 \\
3 & 5
\end{array}\right] ; & \lambda_{1}=7, \mathrm{x}_{1}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \quad & \lambda_{2}=-1, \mathrm{x}_{2}=\left[\begin{array}{c}
-2 \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{c}
-8 \\
4
\end{array}\right]
\end{array}
$$

General solution:

$$
\mathbf{y}(t)=c_{1} e^{7 t} \mathbf{x}_{2}+c_{2} e^{-t} \mathbf{x}_{2}
$$

Particular solution:

$$
\mathbf{y}(t)=4 e^{-1}\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-8 e^{-t} \\
4 e^{-t}
\end{array}\right]
$$

More Practice

$$
\begin{array}{lll}
\qquad \begin{aligned}
y_{1}^{\prime}(t)= & y_{1}(t)+4 y_{2}(t) \\
y_{2}^{\prime}(t) & 3 y_{1}(t)+5 y_{2}(t)
\end{aligned} & ; \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{c}
-8 \\
4
\end{array}\right] \\
A=\left[\begin{array}{ll}
1 & 4 \\
3 & 5
\end{array}\right] ; & \lambda_{1}=7, x_{1}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
\end{array} \quad \lambda_{2}=-1, x_{2}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

$$
\mathbf{y}(t)=c_{1} e^{7 t} \mathbf{x}_{2}+c_{2} e^{-t} \mathbf{x}_{2}
$$

Particular solution:

$$
\mathbf{y}(t)=4 e^{-1}\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-8 e^{-t} \\
4 e^{-t}
\end{array}\right]
$$

Note: $\lim _{t \rightarrow \infty} \mathbf{y}(t)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$; if we'd had different initial conditions, these limits might have been infinite.

End Behaviour

Constants c are determined by initial conditions, i.e. $y(0) ; \lambda$ and \mathbf{x} are an eigenvalue-eigenvector pair.

$$
\begin{array}{ll}
\lambda=1 & c e^{t} \mathbf{x} \\
\lambda=-1 & c e^{-t} \mathbf{x} \\
\lambda=0 & c \mathbf{x}
\end{array}
$$

End Behaviour

Constants c are determined by initial conditions, i.e. $y(0) ; \lambda$ and \mathbf{x} are an eigenvalue-eigenvector pair.

$$
\begin{array}{lll}
\lambda=1 & c e^{t} \mathbf{x} & \xrightarrow{t \rightarrow \infty} \pm \infty \\
\lambda=-1 & c e^{-t} \mathbf{x} & \\
\lambda=0 & c \mathbf{x} &
\end{array}
$$

End Behaviour

Constants c are determined by initial conditions, i.e. $y(0) ; \lambda$ and \mathbf{x} are an eigenvalue-eigenvector pair.

$$
\begin{array}{llll}
\lambda=1 & c e^{t} \mathbf{x} & \xrightarrow{t \rightarrow \infty} \pm \infty & \text { if } c \neq 0 \\
\lambda=-1 & c e^{-t} \mathbf{x} & \xrightarrow{t \rightarrow \infty} 0 & \\
\lambda=0 & c \mathbf{x} & &
\end{array}
$$

End Behaviour

Constants c are determined by initial conditions, i.e. $y(0) ; \lambda$ and \mathbf{x} are an eigenvalue-eigenvector pair.
$\lambda=1$
$c e^{t} \mathbf{x}$
$\xrightarrow{t \rightarrow \infty} \pm \infty$
if $c \neq 0$
$\lambda=-1$
$c e^{-t} \mathbf{x}$

$$
\xrightarrow{t \rightarrow \infty} 0
$$

$$
\lambda=0
$$

$$
c x
$$

$$
\xrightarrow{t \rightarrow \infty} c x
$$

$$
\text { if } c \neq 0
$$

End Behaviour

Constants c are determined by initial conditions, i.e. $y(0) ; \lambda$ and \mathbf{x} are an eigenvalue-eigenvector pair.

$$
\begin{array}{llll}
\lambda=1 & c e^{t} \mathbf{x} & \xrightarrow{t \rightarrow \infty} \pm \infty & \text { if } c \neq 0 \\
\lambda=-1 & c e^{-t} \mathbf{x} & \xrightarrow{t \rightarrow \infty} 0 & \\
\lambda=0 & c \mathbf{x} & \xrightarrow{t \rightarrow \infty} c \mathbf{x} & \text { if } c \neq 0
\end{array}
$$

Positive real eigenvalues lead to solutions that can diverge to $\pm \infty$ (depending on initial conditions);
Negative real eigenvalues lead to solutions that can converge to 0 (depending on initial conditions);
An eigenvalue of zero leads to solutions that can converge to a nonzero constant (depending on initial conditions);

Visualizing End Behaviour

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t)+4 y_{2}(t) \\
& y_{2}^{\prime}(t)=3 y_{1}(t)+5 y_{2}(t)
\end{aligned} \Longrightarrow\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} e^{7 t}-2 c_{2} e^{-t} \\
3 c_{1} e^{7 t}+c_{2} e^{-t}
\end{array}\right]
$$

Visualizing End Behaviour

$$
\left.\begin{array}{rl}
\begin{array}{rl}
y_{1}^{\prime}(t) & =y_{1}(t)+4 y_{2}(t) \\
y_{2}^{\prime}(t) & =3 y_{1}(t)+5 y_{2}(t)
\end{array} \\
\text { If }\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right] & =\left[\begin{array}{c}
-8 \\
4
\end{array}\right], \text { then }\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} e^{7 t}-2 c_{2} e^{-t} \\
3 c_{1} e^{7 t}+c_{2} e^{-t}
\end{array}\right] \\
4 e^{-t}
\end{array}\right] .
$$

Visualizing End Behaviour

$$
\begin{aligned}
& \begin{array}{l}
y_{1}^{\prime}(t)=y_{1}(t)+4 y_{2}(t) \\
y_{2}^{\prime}(t)
\end{array}=3 y_{1}(t)+5 y_{2}(t)
\end{aligned} \Longrightarrow\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} e^{7 t}-2 c_{2} e^{-t} \\
3 c_{1} e^{7 t}+c_{2} e^{-t}
\end{array}\right]
$$

Visualizing End Behaviour

$$
\begin{aligned}
& \begin{array}{l}
y_{1}^{\prime}(t)=y_{1}(t)+4 y_{2}(t) \\
y_{2}^{\prime}(t)=3 y_{1}(t)+5 y_{2}(t)
\end{array} \Longrightarrow\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} e^{7 t}-2 c_{2} e^{-t} \\
3 c_{1} e^{7 t}+c_{2} e^{-t}
\end{array}\right] \\
& \text { If }\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{c}
-8 \\
4
\end{array}\right] \text {, then }\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-8 e^{-t} \\
4 e^{-t}
\end{array}\right] \\
& \text { If }\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{c}
4 \\
10
\end{array}\right] \text {, then }\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
6 e^{7 t}-2 e^{-t} \\
9 e^{7 t}+e^{-t}
\end{array}\right]
\end{aligned}
$$

Visualizing End Behaviour

$$
\begin{aligned}
& \begin{aligned}
y_{1}^{\prime}(t) & =y_{1}(t)+4 y_{2}(t) \\
y_{2}^{\prime}(t) & =3 y_{1}(t)+5 y_{2}(t)
\end{aligned} \Longrightarrow\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} c_{1}{ }^{7 t}-2 c_{2} e^{-t} \\
3 c_{1} e^{7 t}+c_{2} e^{-t}
\end{array}\right] \\
& \text { If }\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{c}
-8 \\
4
\end{array}\right] \text {, then }\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-8 e^{-t} \\
4 e^{-t}
\end{array}\right] \\
& \text { If }\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{c}
4 \\
10
\end{array}\right] \text {, then }\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
6 e^{7 t}-2 e^{-t} \\
9 e^{7 t}+e^{-t}
\end{array}\right]
\end{aligned}
$$

Complex Eigenvalues

$$
\mathbf{y}^{\prime}(t)=\left[\begin{array}{cc}
0 & -2 \\
8 & 0
\end{array}\right] \mathbf{y}(t) \quad \mathbf{y}(0)=\left[\begin{array}{c}
-4 \\
12
\end{array}\right]
$$

Complex Eigenvalues

$$
\mathbf{y}^{\prime}(t)=\left[\begin{array}{cc}
0 & -2 \\
8 & 0
\end{array}\right] \mathbf{y}(t) \quad \mathbf{y}(0)=\left[\begin{array}{c}
-4 \\
12
\end{array}\right]
$$

Eigenvalues: $\lambda_{1}=4 i, \lambda_{2}=-4 i$

Complex Eigenvalues

$$
\mathbf{y}^{\prime}(t)=\left[\begin{array}{cc}
0 & -2 \\
8 & 0
\end{array}\right] \mathbf{y}(t) \quad \mathbf{y}(0)=\left[\begin{array}{c}
-4 \\
12
\end{array}\right]
$$

Eigenvalues: $\lambda_{1}=4 i, \lambda_{2}=-4 i$
Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{l}i \\ 2\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}-i \\ 2\end{array}\right]$

Complex Eigenvalues

$$
\mathbf{y}^{\prime}(t)=\left[\begin{array}{cc}
0 & -2 \\
8 & 0
\end{array}\right] \mathbf{y}(t) \quad \mathbf{y}(0)=\left[\begin{array}{c}
-4 \\
12
\end{array}\right]
$$

Eigenvalues: $\lambda_{1}=4 i, \lambda_{2}=-4 i$
Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{l}i \\ 2\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}-i \\ 2\end{array}\right]$

General solution: $\mathbf{y}(t)=c_{1} e^{4 i t} \mathbf{x}_{1}+c_{2} e^{-4 i t} \mathbf{x}_{2}$ for some constants c_{1} and c_{2}.

Complex Eigenvalues

$$
\mathbf{y}^{\prime}(t)=\left[\begin{array}{cc}
0 & -2 \\
8 & 0
\end{array}\right] \mathbf{y}(t) \quad \mathbf{y}(0)=\left[\begin{array}{c}
-4 \\
12
\end{array}\right]
$$

Eigenvalues: $\lambda_{1}=4 i, \lambda_{2}=-4 i$
Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{l}i \\ 2\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}-i \\ 2\end{array}\right]$

General solution: $\mathbf{y}(t)=c_{1} e^{4 i t} \mathbf{x}_{1}+c_{2} e^{-4 i t} \mathbf{x}_{2}$ for some constants c_{1} and c_{2}.

Particular solution: $\mathbf{y}(t)=(3+2 i) e^{4 i t} \mathbf{x}_{1}+(3-2 i) e^{-4 i t} \mathbf{x}_{2}$

Complex Eigenvalues: Particular Solution

$$
\begin{aligned}
\mathbf{y}(t) & =(3+2 i) e^{4 i t} \mathbf{x}_{1}+(3-2 i) e^{-4 i t} \mathbf{x}_{2} \\
& =(3+2 i)[\cos (4 t)+i \sin (4 t)] \mathbf{x}_{1}+(3-2 i)[\cos (-4 t)+i \sin (-4 t)] \mathbf{x}_{2} \\
& =(3+2 i)[\cos (4 t)+i \sin (4 t)] \mathbf{x}_{1}+(3-2 i)[\cos (4 t)-i \sin (4 t)] \mathbf{x}_{2} \\
& =(3+2 i)[\cos (4 t)+i \sin (4 t)]\left[\begin{array}{l}
i \\
2
\end{array}\right]+(3-2 i)[\cos (4 t)-i \sin (4 t)]\left[\begin{array}{l}
i \\
2
\end{array}\right] \\
& =\cdots \\
& =\left[\begin{array}{c}
-4 \cos (4 t)-6 \sin (4 t) \\
12 \cos (4 t)-8 \sin (4 t)
\end{array}\right]
\end{aligned}
$$

Complex Eigenvalues: Particular Solution

$$
\begin{aligned}
\mathbf{y}(t) & =(3+2 i) e^{4 i t} \mathbf{x}_{1}+(3-2 i) e^{-4 i t} \mathbf{x}_{2} \\
& =\left[\begin{array}{c}
-4 \cos (4 t)-6 \sin (4 t) \\
12 \cos (4 t)-8 \sin (4 t)
\end{array}\right]
\end{aligned}
$$

Complex Eigenvalues: Closer Look

You should be able to follow this explanation, but you don't have to memorize it

Suppose $\lambda_{1}=\overline{\lambda_{2}}$ and $\mathbf{x}_{1}=\overline{\mathbf{x}_{2}}$.

Complex Eigenvalues: Closer Look

You should be able to follow this explanation, but you don't have to memorize it

Suppose $\lambda_{1}=\overline{\lambda_{2}}$ and $\mathbf{x}_{1}=\overline{\mathbf{x}_{2}}$.

Then $e^{\lambda_{1} t} \mathbf{x}_{1}=\overline{e^{\lambda_{2} t} \mathbf{x}_{2}}$.

Complex Eigenvalues: Closer Look

You should be able to follow this explanation, but you don't have to memorize it

Suppose $\lambda_{1}=\overline{\lambda_{2}}$ and $\mathbf{x}_{1}=\overline{\mathbf{x}_{2}}$.

Then $e^{\lambda_{1} t} \mathbf{x}_{1}=\overline{e^{\lambda_{2} t} \mathbf{x}_{2}}$.
Let $f=\operatorname{Re}\left(e^{\lambda_{1} t} \mathbf{x}_{\mathbf{1}}\right)$ and $g=\operatorname{Im}\left(e^{\lambda_{1} t} \mathbf{x}_{\mathbf{1}}\right)$.
Example: $\operatorname{Re}\left[\begin{array}{c}a+b i \\ c+d i\end{array}\right]=\left[\begin{array}{c}a \\ c\end{array}\right]$ and $\operatorname{Im}\left[\begin{array}{c}a+b i \\ c+d i\end{array}\right]=\left[\begin{array}{l}b \\ d\end{array}\right]$.

Complex Eigenvalues: Closer Look

You should be able to follow this explanation, but you don't have to memorize it
Suppose $\lambda_{1}=\overline{\lambda_{2}}$ and $\mathbf{x}_{1}=\overline{\mathbf{x}_{2}}$.

Then $e^{\lambda_{1} t} \mathbf{x}_{1}=\overline{e^{\lambda_{2} t} \mathbf{x}_{2}}$.
Let $f=\operatorname{Re}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)$ and $g=\operatorname{Im}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)$.
Example: $\operatorname{Re}\left[\begin{array}{c}a+b i \\ c+d i\end{array}\right]=\left[\begin{array}{l}a \\ c\end{array}\right]$ and $\operatorname{Im}\left[\begin{array}{c}a+b i \\ c+d i\end{array}\right]=\left[\begin{array}{l}b \\ d\end{array}\right]$.

$$
\begin{aligned}
c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2} & =c_{1}(f+g i)+c_{2}(f-g i) \\
& =\left(c_{1}+c_{2}\right) f+i\left(c_{1}-c_{2}\right) g \\
& =a f+b g \\
& =a \cdot \operatorname{Re}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)+b \cdot \operatorname{lm}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)
\end{aligned}
$$

where a and b are arbitrary constants, possibly complex

Complex Eigenvalues: Closer Look

$$
\mathbf{y}^{\prime}(t)=\left[\begin{array}{cc}
0 & -2 \\
8 & 0
\end{array}\right] \mathbf{y}(t) \quad \mathbf{y}(0)=\left[\begin{array}{c}
-4 \\
12
\end{array}\right]
$$

Complex Eigenvalues: Closer Look

$$
\mathbf{y}^{\prime}(t)=\left[\begin{array}{cc}
0 & -2 \\
8 & 0
\end{array}\right] \mathbf{y}(t) \quad \mathbf{y}(0)=\left[\begin{array}{c}
-4 \\
12
\end{array}\right]
$$

Eigenvalues: $\lambda_{1}=4 i, \lambda_{2}=-4 i$

Complex Eigenvalues: Closer Look

$$
\mathbf{y}^{\prime}(t)=\left[\begin{array}{cc}
0 & -2 \\
8 & 0
\end{array}\right] \mathbf{y}(t) \quad \mathbf{y}(0)=\left[\begin{array}{c}
-4 \\
12
\end{array}\right]
$$

Eigenvalues: $\lambda_{1}=4 i, \lambda_{2}=-4 i$
Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{l}i \\ 2\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}-i \\ 2\end{array}\right]$

Complex Eigenvalues: Closer Look

$$
\mathbf{y}^{\prime}(t)=\left[\begin{array}{cc}
0 & -2 \\
8 & 0
\end{array}\right] \mathbf{y}(t) \quad \mathbf{y}(0)=\left[\begin{array}{c}
-4 \\
12
\end{array}\right]
$$

Eigenvalues: $\lambda_{1}=4 i, \lambda_{2}=-4 i$
Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{l}i \\ 2\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}-i \\ 2\end{array}\right]$
General solution:

$$
\begin{aligned}
\mathbf{y}(t) & =c_{1} e^{4 i t} \mathbf{x}_{1}+c_{2} e^{-4 i t} \mathbf{x}_{2} \\
& =c_{1} e^{4 i t} \mathbf{x}_{1}+c_{2} \overline{e^{4 i t} \mathbf{x}_{1}} \\
& =a \cdot \operatorname{Re}\left(e^{4 i t} \mathbf{x}_{1}\right)+b \cdot \operatorname{Im}\left(e^{4 i t} \mathbf{x}_{1}\right) \\
& =a\left[\begin{array}{c}
-2 \sin (4 t) \\
4 \cos (4 t)
\end{array}\right]+b\left[\begin{array}{l}
-2 \cos (4 t) \\
-4 \sin (4 t)
\end{array}\right]
\end{aligned}
$$

where a and b are arbitrary constants

Shorcut

Suppose we're solving $\mathbf{y}^{\prime}=A \mathbf{y}$, and A has a complex pair of eigenvalues and eigenvectors $\lambda_{1}=\overline{\lambda_{2}}, \mathbf{x}_{1}=\overline{\mathbf{x}_{2}}$.

To find the solutions corresponding to these eigenvalues and eigenvectors, $c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}$ is equivalent to $a \cdot \operatorname{Re}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)+b \cdot \operatorname{Im}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)$.
That is:

Shorcut

Suppose we're solving $\mathbf{y}^{\prime}=A \mathbf{y}$, and A has a complex pair of eigenvalues and eigenvectors $\lambda_{1}=\overline{\lambda_{2}}, \mathbf{x}_{1}=\overline{\mathbf{x}_{2}}$.

To find the solutions corresponding to these eigenvalues and eigenvectors, $c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}$ is equivalent to $a \cdot \operatorname{Re}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)+b \cdot \operatorname{Im}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)$.
That is:

1. Choose a single solution, like $e^{\lambda_{1} t} x_{1}$

Shorcut

Suppose we're solving $\mathbf{y}^{\prime}=A \mathbf{y}$, and A has a complex pair of eigenvalues and eigenvectors $\lambda_{1}=\overline{\lambda_{2}}, \mathbf{x}_{1}=\overline{\mathbf{x}_{2}}$.

To find the solutions corresponding to these eigenvalues and eigenvectors, $c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}$ is equivalent to $a \cdot \operatorname{Re}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)+b \cdot \operatorname{Im}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)$.
That is:

1. Choose a single solution, like $e^{\lambda_{1} t} x_{1}$
2. Separate it into its real and imaginary part

Shorcut

Suppose we're solving $\mathbf{y}^{\prime}=A \mathbf{y}$, and A has a complex pair of eigenvalues and eigenvectors $\lambda_{1}=\overline{\lambda_{2}}, \mathbf{x}_{1}=\overline{\mathbf{x}_{2}}$.

To find the solutions corresponding to these eigenvalues and eigenvectors, $c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}$ is equivalent to $a \cdot \operatorname{Re}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)+b \cdot \operatorname{Im}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)$.
That is:

1. Choose a single solution, like $e^{\lambda_{1} t} x_{1}$
2. Separate it into its real and imaginary part
3. The general solution is any linear combination of the real and imaginary part

Complex Eigenvalues

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] ; \quad \text { solve } \mathbf{y}^{\prime}=A \mathbf{y}
$$

Complex Eigenvalues

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] ; \quad \text { solve } \mathbf{y}^{\prime}=A \mathbf{y}
$$

Eigenvalues: $\lambda_{1}=1+i, \lambda_{2}=1-i$

Complex Eigenvalues

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] ; \quad \text { solve } \mathbf{y}^{\prime}=A \mathbf{y}
$$

Eigenvalues: $\lambda_{1}=1+i, \lambda_{2}=1-i$
Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$,

Complex Eigenvalues

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] ; \quad \text { solve } \mathbf{y}^{\prime}=A \mathbf{y}
$$

Eigenvalues: $\lambda_{1}=1+i, \lambda_{2}=1-i$
Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{c}-i \\ 1\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}i \\ 1\end{array}\right]$

Complex Eigenvalues

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] ; \quad \text { solve } \mathbf{y}^{\prime}=A \mathbf{y}
$$

Eigenvalues: $\lambda_{1}=1+i, \lambda_{2}=1-i$
Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{c}-i \\ 1\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}i \\ 1\end{array}\right]$ One solution:

Complex Eigenvalues

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] ; \quad \text { solve } \mathbf{y}^{\prime}=A \mathbf{y}
$$

Eigenvalues: $\lambda_{1}=1+i, \lambda_{2}=1-i$
Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{c}-i \\ 1\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}i \\ 1\end{array}\right]$ One solution:

$$
\begin{aligned}
& e^{(1+i) t}\left[\begin{array}{c}
-i \\
1
\end{array}\right]=e^{t} e^{i t}\left[\begin{array}{c}
-i \\
1
\end{array}\right] \\
= & e^{t}(\cos (t)+i \sin (t))\left[\begin{array}{c}
-i \\
1
\end{array}\right] \\
= & {\left[\begin{array}{c}
e^{t} \sin t \\
e^{t} \cos t
\end{array}\right]+i\left[\begin{array}{c}
-e^{t} \cos t \\
e^{t} \sin t
\end{array}\right] }
\end{aligned}
$$

Complex Eigenvalues

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] ; \quad \text { solve } \mathbf{y}^{\prime}=A \mathbf{y}
$$

Eigenvalues: $\lambda_{1}=1+i, \lambda_{2}=1-i$
Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{c}-i \\ 1\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}i \\ 1\end{array}\right]$ One solution:

$$
\begin{aligned}
& e^{(1+i) t}\left[\begin{array}{c}
-i \\
1
\end{array}\right] \\
= & {\left[\begin{array}{c}
e^{t} \sin t \\
e^{t} \cos t
\end{array}\right]+i\left[\begin{array}{c}
-e^{t} \cos t \\
e^{t} \sin t
\end{array}\right] }
\end{aligned}
$$

Complex Eigenvalues

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] ; \quad \text { solve } \mathbf{y}^{\prime}=A \mathbf{y}
$$

Eigenvalues: $\lambda_{1}=1+i, \lambda_{2}=1-i$
Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{c}-i \\ 1\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}i \\ 1\end{array}\right]$ One solution:

$$
\begin{aligned}
& e^{(1+i) t}\left[\begin{array}{c}
-i \\
1
\end{array}\right] \\
= & {\left[\begin{array}{c}
e^{t} \sin t \\
e^{t} \cos t
\end{array}\right]+i\left[\begin{array}{c}
-e^{t} \cos t \\
e^{t} \sin t
\end{array}\right] }
\end{aligned}
$$

General Solution:

$$
=c_{1}\left[\begin{array}{c}
e^{t} \sin t \\
e^{t} \cos t
\end{array}\right]+c_{2}\left[\begin{array}{c}
-e^{t} \cos t \\
e^{t} \sin t
\end{array}\right]
$$

Course Notes 6.3: Systems of Linear Differential Equations

000000000000000000000000

Complex Eigenvalues

$$
A=\left[\begin{array}{cc}
0 & \frac{1}{4} \\
-5 & -2
\end{array}\right]
$$

Complex Eigenvalues

$$
A=\left[\begin{array}{cc}
0 & \frac{1}{4} \\
-5 & -2
\end{array}\right]
$$

Eigenvalues: $\lambda_{1}=-1+\frac{1}{2} i$,

$$
\lambda_{2}=-1-\frac{1}{2} i
$$

Complex Eigenvalues

$$
A=\left[\begin{array}{cc}
0 & \frac{1}{4} \\
-5 & -2
\end{array}\right]
$$

Eigenvalues: $\lambda_{1}=-1+\frac{1}{2} i$,
Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{c}2+i \\ -10\end{array}\right]$,

$$
\lambda_{2}=-1-\frac{1}{2} i
$$

$$
\mathbf{x}_{2}=\left[\begin{array}{l}
2-i \\
-10
\end{array}\right]
$$

Complex Eigenvalues

$$
A=\left[\begin{array}{cc}
0 & \frac{1}{4} \\
-5 & -2
\end{array}\right]
$$

Eigenvalues: $\lambda_{1}=-1+\frac{1}{2} i$,

$$
\lambda_{2}=-1-\frac{1}{2} i
$$

Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{c}2+i \\ -10\end{array}\right]$,

$$
\mathbf{x}_{2}=\left[\begin{array}{c}
2-i \\
-10
\end{array}\right]
$$

Choosing one:

$$
\begin{aligned}
e^{\lambda_{1} t} \mathbf{x}_{1} & =e^{\left(-1+\frac{1}{2} i\right) t} \mathbf{x}_{1}=e^{-t} e^{i t / 2} \mathbf{x}_{1}=e^{-t}(\cos (t / 2)+i \sin (t / 2)) \mathbf{x}_{1} \\
& =e^{-t}(\cos (t / 2)+i \sin (t / 2))\left[\begin{array}{c}
2+i \\
-10
\end{array}\right] \\
& =e^{-t}\left[\begin{array}{c}
2 \cos (t / 2)-\sin (t / 2) \\
-10 \cos (t / 2)
\end{array}\right]+i e^{-t}\left[\begin{array}{c}
\cos (t / 2)+\sin (t / 2) \\
-10 \sin (t / 2)
\end{array}\right]
\end{aligned}
$$

Complex Eigenvalues

$$
A=\left[\begin{array}{cc}
0 & \frac{1}{4} \\
-5 & -2
\end{array}\right]
$$

Eigenvalues: $\lambda_{1}=-1+\frac{1}{2} i$,

$$
\lambda_{2}=-1-\frac{1}{2} i
$$

Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{c}2+i \\ -10\end{array}\right]$,

$$
\mathbf{x}_{2}=\left[\begin{array}{c}
2-i \\
-10
\end{array}\right]
$$

Choosing one:

$$
e^{\lambda_{1} t} \mathbf{x}_{1}=e^{-t}\left[\begin{array}{c}
2 \cos (t / 2)-\sin (t / 2) \\
-10 \cos (t / 2)
\end{array}\right]+i e^{-t}\left[\begin{array}{c}
\cos (t / 2)+\sin (t / 2) \\
-10 \sin (t / 2)
\end{array}\right]
$$

General solution:

$$
\frac{c_{1}}{e^{t}}\left[\begin{array}{c}
2 \cos (t / 2)-\sin (t / 2) \\
-10 \cos (t / 2)
\end{array}\right]+\frac{c_{2}}{e^{t}}\left[\begin{array}{c}
\cos (t / 2)+\sin (t / 2) \\
-10 \sin (t / 2)
\end{array}\right]
$$

End Behaviour

$$
\begin{array}{llll}
\lambda=1 & c e^{t} \mathbf{x} & \xrightarrow{t \rightarrow \infty} \pm \infty & \text { if } c \neq 0 \\
\lambda=-1 & c e^{-t} \mathbf{x} & \xrightarrow{t \rightarrow \infty} 0 & \\
\lambda=0 & c \mathbf{x} & \xrightarrow{t \rightarrow \infty} c \mathbf{x} & \text { if } c \neq 0
\end{array}
$$

$$
\begin{aligned}
& \lambda=i \\
& \lambda=1+i \\
& \lambda=-1+i
\end{aligned}
$$

$$
c(\cos t+i \sin t) \mathbf{x}
$$

oscillating

$$
c e^{t}(\cos t+i \sin t) \mathbf{x}
$$

oscillating, growing

$$
c e^{-t}(\cos t+i \sin t) \mathbf{x}
$$

oscillating, decaying

Bigger Matrices

$$
\mathbf{y}^{\prime}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \mathbf{y}
$$

Bigger Matrices

$$
\mathbf{y}^{\prime}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \mathbf{y}
$$

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \mathbf{x}_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \lambda_{2}=1+i
\end{aligned} \quad \mathbf{x}_{2}=\left[\begin{array}{l}
1 \\
i \\
0
\end{array}\right] \quad \mathbf{x}_{3}=1-i=\left[\begin{array}{c}
1 \\
-i \\
0
\end{array}\right] .
$$

Bigger Matrices

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \lambda_{2}=1+i
\end{aligned} \quad \lambda_{3}=1-i=\left[\begin{array}{l}
1 \\
i \\
0
\end{array}\right] \quad \mathbf{x}_{3}=\left[\begin{array}{c}
1 \\
-i \\
0
\end{array}\right] . \$ ~ \$
$$

General Solution:

$$
c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+c_{3} e^{\lambda_{3} t} \mathbf{x}_{3}
$$

Bigger Matrices

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \lambda_{2}=1+i
\end{aligned} \quad \lambda_{3}=1-i=\left[\begin{array}{l}
1 \\
i \\
0
\end{array}\right] \quad \mathbf{x}_{3}=\left[\begin{array}{c}
1 \\
-i \\
0
\end{array}\right] . \$ ~ \$
$$

General Solution:

$$
c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+c_{3} e^{\lambda_{3} t} \mathbf{x}_{3}
$$

Bigger Matrices

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \lambda_{2}=1+i
\end{aligned} \quad \lambda_{3}=1-i=\left[\begin{array}{l}
1 \\
i \\
0
\end{array}\right] \quad \mathbf{x}_{3}=\left[\begin{array}{c}
1 \\
-i \\
0
\end{array}\right] . \$ ~ \$
$$

General Solution:

$$
\begin{gathered}
c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+c_{3} e^{\lambda_{3} t} \mathbf{x}_{3} \\
e^{\lambda_{1} t} \mathbf{x}_{1}=e^{0 t}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

Bigger Matrices

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \lambda_{2}=1+i
\end{aligned} \quad \lambda_{3}=1-i=\left[\begin{array}{l}
1 \\
i \\
0
\end{array}\right] \quad \mathbf{x}_{3}=\left[\begin{array}{c}
1 \\
-i \\
0
\end{array}\right] . \$ ~ \$
$$

General Solution:

$$
c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+c_{3} e^{\lambda_{3} t} \mathbf{x}_{3}
$$

Bigger Matrices

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \lambda_{2}=1+i
\end{aligned} \quad \lambda_{3}=1-i=\left[\begin{array}{l}
1 \\
i \\
0
\end{array}\right] \quad \mathbf{x}_{3}=\left[\begin{array}{c}
1 \\
-i \\
0
\end{array}\right] .
$$

General Solution:

$$
c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+c_{3} e^{\lambda_{3} t} \mathbf{x}_{3}
$$

We get to use our shortcut, because \mathbf{x}_{1} and \mathbf{x}_{2} are complex conjugates of one another.

$$
\begin{aligned}
e^{\lambda_{2} t} \mathbf{x}_{2} & =e^{(1+i) t}\left[\begin{array}{l}
1 \\
i \\
0
\end{array}\right]=e^{t} e^{i t}\left[\begin{array}{l}
1 \\
i \\
0
\end{array}\right] \\
& =e^{t}(\cos t+i \sin t)\left[\begin{array}{l}
1 \\
i \\
0
\end{array}\right]=\left[\begin{array}{c}
e^{t} \cos t \\
-e^{t} \sin t \\
0
\end{array}\right]+i\left[\begin{array}{c}
e^{t} \sin t \\
e^{t} \cos t \\
0
\end{array}\right]
\end{aligned}
$$

Bigger Matrices

$$
\begin{array}{ll}
\lambda_{1}=0 & \lambda_{2}=1+i \\
\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \lambda_{3}=1-i \\
\mathbf{x}_{2}=\left[\begin{array}{l}
1 \\
i \\
0
\end{array}\right] \quad \mathbf{x}_{3}=\left[\begin{array}{c}
1 \\
-i \\
0
\end{array}\right]
\end{array}
$$

General Solution:

$$
\begin{gathered}
c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+c_{3} e^{\lambda_{3} t} \mathbf{x}_{3} \\
\mathbf{y}=c_{1}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
e^{t} \cos t \\
-e^{t} \sin t \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
e^{t} \sin t \\
e^{t} \cos t \\
0
\end{array}\right] \\
=\left[\begin{array}{c}
c_{2} e^{t} \cos t+c_{3} e^{t} \sin t \\
-c_{2} e^{t} \sin t+c_{3} e^{t} \cos t \\
c_{1}
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
y_{1}^{\prime}(t) & =3 y_{1}(t)+0 y_{2}(t)+0 y_{3}(t) \\
y_{2}^{\prime}(t) & =0 y_{1}(t)+2 y_{2}(t)-4 y_{3}(t) \\
y_{3}^{\prime}(t) & =0 y_{1}(t)+1 y_{2}(t)+2 y_{3}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
y_{1}^{\prime}(t) & =3 y_{1}(t)+0 y_{2}(t)+0 y_{3}(t) \\
y_{2}^{\prime}(t) & =0 y_{1}(t)+2 y_{2}(t)-4 y_{3}(t) \\
y_{3}^{\prime}(t) & =0 y_{1}(t)+1 y_{2}(t)+2 y_{3}(t)
\end{aligned} \\
& A=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 2 & -4 \\
0 & 1 & 2
\end{array}\right], \lambda_{1}=3, \lambda_{2}=2+2 i, \lambda_{3}=2-2 i
\end{aligned}
$$

$$
\left.\begin{array}{rl}
y_{1}^{\prime}(t) & =3 y_{1}(t)+0 y_{2}(t)+0 y_{3}(t) \\
y_{2}^{\prime}(t) & = \\
y_{3}^{\prime}(t) & =0 y_{1}(t)+2 y_{2}(t)-4 y_{3}(t)+1 y_{2}(t)+2 y_{3}(t)
\end{array}\right] \begin{aligned}
& A=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 2 & -4 \\
0 & 1 & 2
\end{array}\right], \\
& \mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], x_{2}=3, \lambda_{2}=2+ \\
& {\left[\begin{array}{c}
0 \\
2 \\
-i
\end{array}\right], x_{3}=\left[\begin{array}{l}
0 \\
2 \\
i
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
y_{1}^{\prime}(t) & =3 y_{1}(t)+0 y_{2}(t)+0 y_{3}(t) \\
y_{2}^{\prime}(t) & =0 y_{1}(t)+2 y_{2}(t)-4 y_{3}(t) \\
y_{3}^{\prime}(t) & =0 y_{1}(t)+1 y_{2}(t)+2 y_{3}(t)
\end{aligned}
$$

$A=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 2 & -4 \\ 0 & 1 & 2\end{array}\right]$,

$$
\lambda_{1}=3, \lambda_{2}=2+2 i, \lambda_{3}=2-2 i
$$

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}
0 \\
2 \\
-i
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{c}
0 \\
2 \\
i
\end{array}\right]
$$

General Solution:

$$
\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]=c_{1} e^{3 t}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
2 e^{2 t} \cos (2 t) \\
e^{2 t} \sin (2 t)
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
2 e^{2 t} \sin (2 t) \\
-e^{2 t} \cos (2 t)
\end{array}\right]
$$

