
Course Notes 6.2: Eigenanalysis Simplifies Matrix Powers

Outline

Week 11: Eigenvalues and eigenvectors:
complex numbers and random walks

Course Notes: 6.2

Goals: More practice finding eigenvalues and eigenvectors;
expanding these to the complex numbers; using them in the
context of random walks.

Note: because these computations get pretty long, we will skip
many of the repetitive parts in lecture. We’ll focus on newer
material, and leave it to you to review older content.
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Random Walks - Review

• xn =


p1

p2
...
pk

 and p1 + p2 + · · ·+ pk = 1

Probability vector, at time n

• xn = Pxn−1

• xn = Pnx0
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Random Walks and Eigenvalues
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λ1 = 1
6 , k1 =

[
1
−1

]
; λ2 = 1, k2 =

[
2
3

]

Your initial state is x0 =

[
1
0

]
. What happens after many tests?

What if x0 were different?
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Eigenvalues of Probability Transition Matrices

Theorem

If P is a transition matrix (non-negative entries with all columns
summing to one) that in addition has all positive entries then P has an
eigenvalue 1 with a single eigenvector k1 that can be chosen to be a
probability vector. All other eigenvalues satisfy |λ| < 1 with eigenvectors
with components that sum to zero. Thus,

lim
n→∞

xn = k1

for any x0. That is, k1 is an equilibrium probability.

[Proof, of sorts]

In short: that last example was typical. As long as a probability matrix
has no zeroes:

• Probability matrices have 1 as an eigenvalue

• There will be some equilibrium that the system will reach in the long
run, regardless of initial state, corresponding to an eigenvector of 1.
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Equilibrium Probability

Which of these random walk models seems likely to have
an equilibrium probability? Is it clear what would it be?

In any given day, your odds of dying are 1 in 1,000.
alive dead

alive 0.999 0
dead 0.001 1

Choosing a career:

? math eng

? 0.3 0 0
math 0.2 1 0
eng 0.5 0 1

Region of residence.

N Hem S Hem

N Hem .99 .01
S Hem .01 .99
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Equilibrium Probability

Find the equilibrium probability of the system.

In a relationship or not, by year.
single partnered

single .4 .25
partnered .6 .75

Theorem

If P is a transition matrix that in addition has all positive entries then P
has an eigenvalue 1 with a single eigenvector k1 that can chosen to be a
probability vector; in this case k1 is the equilibrium probability.

Eigenvalues and eigenvectors:

λ1 = 1 k1 =

[
1
12
5

]
λ2 = 3

20 k2 =

[
1
−1

]

Notes

Notes

Notes

https://mikespivey.wordpress.com/2013/01/17/eigenvalue-stochasti/
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Computation Practice

P =

[
1/3 1/2
2/3 1/2

]
x0 =

[
a

1− a

]
, a ∈ [0, 1]

1. Find all eigenvalues of P, and an associated eigenvector to
each.

2. Write x0 as a linear combination of eigenvectors of P.

3. Calculate xn, where n is some positive integer.

4. Find the equilibrium probability of P.
(If this is the only thing we want to find, we can skip all other
steps, and simply find the eigenvector associated to eigenvalue
1, then scale it to be a probability vector.)
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1. Find Eigenvalues and Eigenvectors

By our theorem, we know that 1 will be an eigenvalue. However,
for the sake of practice, let’s find them the old-fashioned way.

Eigenvalues of P are precisely those scalars λ such that
det(P − λI ) = 0. So we set the determinant equal to zero:

det
[

1/3−λ 1/2
2/3 1/2−λ

]
=

(
1

3
− λ

)(
1

2
− λ

)
−
(

1

2

)(
2

3

)
= λ2−5

6
λ−1

6

And find λ1 = 1 (as expected) and λ2 = −1
6 .

To find the associated eigenvectors, we set Px = λx. (Next Slide)
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1. Find Eigenvalues and Eigenvectors

λ1 = 1[
1/3 1/2
2/3 1/2

] [
x
y

]
= 1

[
x
y

]
→

[
−2/3 1/2
2/3 −1/2

] [
x
y

]
=

[
0
0

]

The solutions to this system are of the form s

[
3
4

]
for some scalar

s. Any vector of this form will do.

λ2 = −1
6[

1/3 1/2
2/3 1/2

] [
x
y

]
= −1

6

[
x
y

]
→

[
1/2 1/2
2/3 2/3

] [
x
y

]
=

[
0
0

]

The solutions to this system are of the form s

[
1
−1

]
for some

scalar s. Any vector of this form will do.

Notes

Notes

Notes
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2. Basis Vectors

To find x0 as a combination of eigenvectors, we have to CHOOSE our

eigenvectors. I like integers, so I’ll use k1 =

[
3
4

]
and k2 =

[
1
−1

]
. Your

vectors may be scalar multiples of these.
The equation we have to solve is:[

a
1− a

]
= x

[
3
4

]
+ y

[
1
−1

]
which can be rewritten as[

3 1
4 −1

] [
x
y

]
=

[
a

1− a

]
Since a is a constant, we can solve this using an augmented matrix and
row reduction.[

3 1 a
4 −1 1− a

]
R2→R2+R1−−−−−−−→

[
3 1 a
7 0 1

]
So x = 1

7 and y = a− 3
7 . That is, x0 = 1

7k1 + (a− 3
7 )k2.
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3. Find xn

Recall xn = Pnx0. With our previous work, the answer is an easy
calculation.

xn = Pnx0 = Pn

(
1

7
k1 +

(
3

7
− a

)
k2

)
=

1

7
Pnk1 +

(
3

7
− a

)
Pnk2

=
1

7
k1 +

(
3

7
− a

)(
−1

6

)n

k2

=

[
3
7
4
7

]
+

[ (
3
7 − a

)
(−1/6)n

−
(

3
7 − a

)
(−1/6)n

]
=

[
3
7 +

(
3
7 − a

)
(−1/6)n

4
7 −

(
3
7 − a

)
(−1/6)n

]
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4. Find the Equilibrium Probability

Recall the equilibrium probability is lim
n→∞

xn = lim
n→∞

Pnx0. With our

previous work, the answer is an easy calculation. Using an
intermediate result from the last slide:

lim
n→∞

xn = lim
n→∞

[
1

7
k1 +

(
3

7
− a

)(
−1

6

)n

k2

]
=

1

7
k1

=

[
3
7
4
7

]
ALTERNATELY, our theorem tells us that the equilibrium
probability will always be an eigenvector associated with the
eigenvalue λ = 1. Since our eigenvectors were of the form s[3, 4],
we can find the equilibrium probability by figuring out which value
of s gives us a vector whose entries sum to one; s = 7 is that
scalar.

Notes

Notes

Notes
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Complex Eigenvalues:

A =

[
0 1
−1 0

]
x =

[
2
3

]
Calculate A90x. You could notice the pattern... but can we use eigenvectors?
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Complex Eigenvalues: A Neat Trick

A =

[
0 1
−1 0

]
x =

[
2
3

]

λ1 = i , k1 =

[
−i
1

]
λ2 = −i , k2 =

[
i
1

]

If the entries of A are all real, its eigenvalues and eigenvectors are
complex conjugates of one another.
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Complex Eigenvalues: A Neat Trick

Ax = λx Definition: λ, x are an eigenvalue-eigenvector pair of A

Ax = λx Take the conjugate of each entry

Ax = λx conjugation distributes over multiplication

Ax = λx If A has only real entries, then A = A.

Definition: λ, x are an eigenvalue-eigenvector pair of A

(If λ and x are real-valued, this statement is true but not
interesting, because λ = λ and x = x.)

Notes

Notes

Notes
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Complex Eigenvalues

Suppose A is a 3-by-3 matrix with all real entries, whose
eigenvectors form a basis of R3.

If A has eigenvalue-eigenvector pair λ = (2 + i), k =
[

3i+4
2i−9

]
,

give another eigenvalue-eigenvector pair.

If λ1 = 1 and λ2 = 5 + 4i , what is λ3?

If A has eigenvalue-eigenvector pair λ = 5 +
√
−2,

k =
[

3
18+
√
−3

]
, give another eigenvalue-eigenvector pair.
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Complex Eigenvalues

Find all eigenvalues and eigenvectors of :

A =

[
−3 5
−2 −1

]
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Eigenfact or Eigenfiction?

Let A be a matrix with eigenvalue λ and associated eigenvector k.

True or False:

1. 2k is an eigenvector of A, associated with λ.

2. It is possible that k is an eigenvalue of A associated with a
different eigenvalue (that is, other than λ).

3. All eigenvectors of A associated with λ are scalar multiples of
k.

4. k might be the zero vector.

5. λ might be zero.

6. If A has only real entries, then λ is real.

7. If A has only real entries, and k has only real entries, then λ is
real.

Notes

Notes

Notes
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Explanations

1. Check the definition of eigenvalues and eigenvectors:

Ak = λk =⇒ 2Ak = 2λk =⇒ A(2k) = λ(2k)

Indeed, any nonzero multiple of k is an eigenvector of A,
associated with λ.

2. k is not the zero vector, so it has some nonzero entry, say
k = [k1, k2, . . . , kn]T and ki 6= 0. If λ and γ are both eigenvalues
associated with k, then:

λk = Ak = γk =⇒ λk = γk

so, in particular, λki = γki ; since ki 6= 0, this implies λ = γ. That
is, the two eigenvalues were actually the same.
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Explanations

3. Consider A = I2 (the 2× 2 identity matrix), λ = 1, k1 = [1, 0]T

and k2 = [0, 1]T .

4. By definition, eigenvectors are nonzero.

5. For example, A = [ 0 1
0 1 ], λ = 0, and k = [10]T .

6. We’ve seen several examples of real-valued matrices with
complex eigenvalues
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Explanations

7. If A and k are real-valued, then Ak has only real entries as well.
Therefore, λk has only real entries. If λ isn’t real, then the entries
of λk contain at least one nonzero entry, and this entry isn’t real
because it’s a nonreal complex number multiplied by a nonzero real
number. This is a contradiction.

Notes

Notes

Notes


