Week 10: Eigenvalues and eigenvectors

Course Notes: 6.1

Goals: Understand how to find eigenvector/eigenvalue pairs, and use them to simplify calculations involving matrix powers. \qquad
\qquad

Course Notes 6.1: Eigenvalues and Eigenvectors

This Will Look Strange: A preview of Why We Bother
Eigenvectors: we'll use a very specific phenomenon to make hard calculations easier. Here is a preview of what we can do.
For random walks, we often wanted to compute a high power of a transition matrix. We used Matlab for this.

$$
\text { Let } P=\left[\begin{array}{l}
1 / 23 / 4 \\
1 / 2 \\
1 / 4
\end{array}\right]
$$

Fact 1: $P\left[\begin{array}{l}3 / 5 \\ 2 / 5\end{array}\right]=1\left[\begin{array}{l}3 / 5 \\ 2 / 5\end{array}\right] \quad$ Fact 2: $P\left[\begin{array}{c}x \\ -x\end{array}\right]=-\frac{1}{4}\left[\begin{array}{c}x \\ -x\end{array}\right]$
$P^{n}\left[\begin{array}{l}3 / 5 \\ 2 / 5\end{array}\right]=\left[\begin{array}{l}3 / 5 \\ 2 / 5\end{array}\right]$
$P^{n}\left[\begin{array}{l}4 / 5 \\ 1 / 5\end{array}\right]=P^{n}\left(\left[\begin{array}{l}3 / 5 \\ 2 / 5\end{array}\right]+\left[\begin{array}{c}1 / 5 \\ -1 / 5\end{array}\right]\right)=P^{n}\left[\begin{array}{l}3 / 5 \\ 2 / 5\end{array}\right]+P^{n}\left[\begin{array}{c}1 / 5 \\ -1 / 5\end{array}\right]=$ $\left[\begin{array}{l}3 / 5 \\ 2 / 5\end{array}\right]+\left(-\frac{1}{4}\right)^{n}\left[\begin{array}{c}1 / 5 \\ -1 / 5\end{array}\right]=\left[\begin{array}{c}\frac{3}{5}+(-1)^{n} \frac{1}{5 \cdot 4 n} \\ \frac{2}{5}-(-1)^{n} \frac{1}{5 \cdot 4^{n}}\end{array}\right]$ No Matlab!

Course Notes 6.1.: Eigenvalues and Eigenvectors
 When Matrix Multiplication looks like Scalar Multiplication

$$
\left[\begin{array}{cc}
1 / 2 & 3 / 4 \\
1 / 2 & 1 / 4
\end{array}\right]\left[\begin{array}{c}
x \\
-x
\end{array}\right]=-\frac{1}{4}\left[\begin{array}{c}
x \\
-x
\end{array}\right] \quad\left[\begin{array}{cc}
1 / 2 & 3 / 4 \\
1 / 2 & 1 / 4
\end{array}\right]\left[\begin{array}{c}
x \\
2 x / 3
\end{array}\right]=1\left[\begin{array}{c}
x \\
2 x / 3
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=2\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Recall:
Two vectors that are scalar multiples of one another are parallel.

If we interpret matrix multiplication as a linear transformation, we're looking for a vector whose image is parallel to itself

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reflections, Revisited

Notes

$$
\operatorname{Ref}_{\frac{\pi}{4}}=\left[\begin{array}{cc}
\cos \left(2 \frac{\pi}{4}\right) & \sin \left(2 \frac{\pi}{4}\right) \\
\sin \left(2 \frac{\pi}{4}\right) & -\cos \left(2 \frac{\pi}{4}\right)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

\qquad

Course Notes 6.1: Eigenvalues and Eigenvectors

Eigenvectors and Eigenvalues

Given a matrix A, a scalar λ, and a NONZERO vector \mathbf{x} with

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

we say \mathbf{x} is an eigenvector of A with eigenvalue λ.
Notice we omit zero vectors! These are not particularly useful, and they behave differently from nonzero vectors with this property

Notes

$$
\operatorname{Rot}_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Search for eigenvectors:

$$
\begin{gathered}
{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\lambda\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
\text { e.g. } \theta=135^{\circ}
\end{gathered}
$$

Notes
\qquad

Finding Eigenvectors, Given Eigenvalues
Computation! We'll learn this in two stages. Given: 7 is an
eigenvalue of the matrix $\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 4 & 1 \\ 4 & 1 & 2\end{array}\right]$
What is an eigenvector associated to that eigenvalue?
An eigenvector $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ with eigenvalue 7 would satisfy this equation:

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 4 & 1 \\
4 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=7\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

In equation form

$$
\begin{aligned}
x+2 y+4 x & =7 x \\
2 x+4 y+z & =7 y \\
4 x+y+2 z & =7 z
\end{aligned}
$$

Course Notes 6.1: Eigenvalues and Eigenvectors

Finding Eigenvectors, Given Eigenvalues

In equation form:

$$
\begin{aligned}
x+2 y+4 x & =7 x \\
2 x+4 y+z & =7 y \\
4 x+y+2 z & =7 z
\end{aligned}
$$

In better equation form:

$$
\begin{aligned}
-6 x+2 y+4 x & =0 \\
2 x-3 y+z & =0 \\
4 x+y-5 z & =0
\end{aligned}
$$

Gaussian elimination on augmented matrix:

$$
\left[\begin{array}{ccc|c}
-6 & 2 & 4 & 0 \\
2 & -3 & 1 & 0 \\
4 & 1 & -5 & 0
\end{array}\right] \rightarrow \rightarrow \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Course Notes 6.1: Eigenvalues and Eigenvectors

Finding Eigenvectors, Given Eigenvalues

Gaussian elimination on augmented matrix:

$$
\left[\begin{array}{ccc|c}
-6 & 2 & 4 & 0 \\
2 & -3 & 1 & 0 \\
4 & 1 & -5 & 0
\end{array}\right] \rightarrow \rightarrow \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Finding Eigenvectors, Given Eigenvalues

Notes

The solutions to:

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 4 & 1 \\
4 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=7\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

are precisely the vectors:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=s\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Course Notes 6.1: Eigenvalues and Eigenvectors

Finding Eigenvectors from Eigenvalues
The matrix $\left[\begin{array}{cc}3 & 6 \\ 6 & -2\end{array}\right]$ has eigenvalues -6 and 7 .
Find an eigenvector associated to each eigenvalue.
$\lambda=-6, \mathbf{x}=\left[\begin{array}{c}2 \\ -3\end{array}\right] \quad \lambda=7, \mathbf{x}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$
(or any scalar multiple of those vectors)

Basis of $\mathbb{R}^{2}:\left\{\left[\begin{array}{c}2 \\ -3\end{array}\right],\left[\begin{array}{l}3 \\ 2\end{array}\right]\right\}$

Finding Eigenvectors from Eigenvalues
The matrix $\left[\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right]$ has eigenvalues -2 and 5 .
Find an eigenvector associated to each eigenvalue.

From the 2015 final exam

Notes

The matrix below represents rotation in 3D about a line through the origin.

$$
\left[\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
\frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2}
\end{array}\right]
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Course Notes 6.1: Eigenvalues and Eigenvectors

Generalized Eigenvector Finding

Given matrix A with eigenvalue λ, find an associated eigenvector \mathbf{x}

$$
\begin{aligned}
A \mathbf{x} & =\lambda \mathbf{x} \\
A \mathbf{x}-\lambda \mathbf{x} & =\mathbf{0} \\
(A-\lambda I) \mathbf{x} & =\mathbf{0}
\end{aligned}
$$

Eigenvectors \mathbf{x} associated with eigenvalue λ are precisely the nonzero solutions to this homogeneous system.

So, we set up a homogeneous system of equations, where the coefficient matrix is formed by subtracting λ from every entry in the main diagonal of A. of

[^0]Notes

First, a reminder...

Solutions to Systems of Equations
Let A be an n-by- n matrix. The following statements are equivalent:

1) $\mathbf{A} \mathbf{x}=\mathbf{b}$ has exactly one solution for any \mathbf{b}
2) $A \boldsymbol{x}=\mathbf{0}$ has no nonzero solutions.
3) The rank of A is n.
4) The reduced form of A has no zeroes along the main diagonal.
5) A is invertible
6) $\operatorname{det}(A) \neq 0$

Course Notes 6.1: Eigenvalues and Eigenvectors

How do we Find Eigenvalues, Though?
A matrix; λ eigenvalue, \mathbf{x} eigenvector $($ so $\mathbf{x} \neq \mathbf{0})$

$$
\begin{aligned}
A \mathbf{x} & =\lambda \mathbf{x} \\
A \mathbf{x}-\lambda \mathbf{x} & =\mathbf{0} \\
(A-\lambda I) \mathbf{x} & =\mathbf{0} \\
(A-\lambda I) \mathbf{x} & =\mathbf{0} \text { has a nonzero solution } \\
\operatorname{det}(A-\lambda I) & =0
\end{aligned}
$$

Note: we're not taking the determinant of A !

Course Notes $6.1 . \mathrm{Eigenvalues}$ and Eigenvectors 00000000000000000

Find Eigenvalues and Associated Eigenvectors

$$
\begin{gathered}
\lambda \text { eigenvalue } \Leftrightarrow \operatorname{det}(A-\lambda I)=0 \\
A=\left[\begin{array}{cc}
1 & 0 \\
3 & -1
\end{array}\right] \\
B=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Find Eigenvalues and Associated Eigenvectors

$$
A=\left[\begin{array}{lll}
1 & 4 & 5 \\
0 & 2 & 6 \\
0 & 0 & 3
\end{array}\right]
$$

Course Notes 6.1: Eigenvalues and Eigenvectors

Using Eigenvalues to Compute Matrix Powers

$$
A=\left[\begin{array}{lll}
1 & 4 & 5 \\
0 & 2 & 6 \\
0 & 0 & 3
\end{array}\right]
$$

$$
\begin{gathered}
\lambda=1, \mathbf{k}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \lambda=2, \mathbf{k}_{2}=\left[\begin{array}{c}
4 \\
1 \\
0
\end{array}\right] \quad \lambda=3, \mathbf{k}_{3}=\left[\begin{array}{c}
29 \\
12 \\
2
\end{array}\right] \\
\mathbf{x}=\left[\begin{array}{c}
47 \\
16 \\
2
\end{array}\right]=2\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+4\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
29 \\
12 \\
2
\end{array}\right]=2 \mathbf{k}_{1}+4 \mathbf{k}_{2}+\mathbf{k}_{3}
\end{gathered}
$$

Course Notes 6.1: Eigenvalues and Eigenvectors

Using Eigenvalues to Compute Matrix Powers

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 4 & 5 \\
0 & 2 & 6 \\
0 & 0 & 3
\end{array}\right] \\
\lambda=1, \mathbf{k}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \lambda=2, \mathbf{k}_{2}=\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right] \quad \lambda=3, \mathbf{k}_{3}=\left[\begin{array}{c}
29 \\
12 \\
2
\end{array}\right] \\
\mathbf{x}=2 \mathbf{k}_{1}+4 \mathbf{k}_{2}+\mathbf{k}_{3}
\end{gathered}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Course Notes 6.1: Eigenvalues and Eigenvectors
000000000000000000000
To Compute $A^{n} \mathbf{x}$:
Notes

- Find eigenvalues of A

Find all solutions λ to the equation $\operatorname{det}(A-\lambda I)=0$.
These are your eigenvalues.

- Find associated eigenvectors of A

These will be the nonzero solutions x to $(A-\lambda /) \mathrm{x}=0$

- Write \mathbf{x} as a linear combination of eigenvectors of A

For eigenvectors $k_{1}, k_{2}, \ldots, k_{n}$, solve the linear system of equations $\mathbf{x}=a_{1} k_{1}+a_{2} k_{2}+\cdots+a_{n} k_{n}$ for constants $a_{1}, a_{2}, \ldots, a_{n}$.

- Matrix multiplication turns into scalar multiplication
$A \mathbf{x}=A\left(a_{1} k_{1}+a_{2} k_{2}+\cdots+a_{n} k_{n}\right)=$
$\left(a_{1} \lambda_{1}^{n} k_{1}+a_{2} \lambda_{2}^{n} k_{2}+\cdots+a_{n} \lambda_{n}^{n} k_{n}\right)$

Course Notes 6.1: Eigenvalues and Eigenvectors

000000000000000000000

Compute

$$
\left[\begin{array}{cc}
3 & 2 \\
-5 & -3
\end{array}\right]^{101}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

1. Eigenvalues:
2. Eigenvectors:
3. Write $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ as a linear combination of eigenvectors:
4. Evaluate

Your final answer should consist of real, integer entries.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Course Notes 6.1. Eigenvales and Eigenvectors
 -0000000000000000000000
 How do we Find Eigenvalues, Though?

