Assignment #2To be handed in Friday, October 23

1. Question 1

- (a) Let X be a Gaussian variable with mean $m = 10^6$ \$ and standard deviation $\sigma = 3 \times 10^5$ \$. Compute V@R(X) and AV@R(X) at the level $\lambda = 1\%$
- (b) Let Y be another variable, independent from X and with the same law. Compute V@R(X + Y) and AV@R(X + Y) at the level $\lambda = 1\%$
- 2. Question 2

I have to pay back 10^6 \$ exactly one year from now, and I have a zerocoupon bond, maturing in exactly ten years, with face value 1.4×10^6 \$. On the day the loan comes due, I will sell the bond, and use the proceeds to pay off the loan. What is the present (ie discounted using today's interest rate) V@R of my position at the level 1%? The yield curve is assumed to be flat and to remain so. The interest rate today is 3%. The interest rate one year from now will be r%, where r is a lognormal random variable with mean m = 3% and standard deviation $\sigma = 2\%$.

3. Question 3.

Let X be a random variable, $F_X(x)$ its distribution function and $q_X(u)$ its quantile, $0 \le u \le 1$. It is assumed that X is uniformly bounded and F is continuous and strictly increasing.

- (a) Show that $U(\omega) = F_X(X(\omega))$ is a uniformly distributed random variable, i.e. $P[U \le \lambda] = \lambda$
- (b) Show that $q_X(U(\omega)) = X(\omega)$
- (c) Show that, for any bounded measurable function f(x), we have:

$$\int_{-\infty}^{\infty} f(X) dP = \int_{0}^{1} f(q_X(u)) du$$

- 4. Question 4
 - (a) Prove that, given two sets of n numbers:

$$a_1, a_2, \dots, a_{n-1}, a_n$$
 with $a_i < a_j$ when $i < j$
 $b_1, b_2, \dots b_{n-1}, b_n$ with $b_i \neq b_j$ when $i \neq j$

and a permutation σ of $\{1, 2, ..., n-1, n\}$, the sum:

$$S_{\sigma} := \sum_{i=1}^{n} a_i b_{\sigma(i)}$$

is largest when the $b_{\sigma(i)}$ are ordered:

$$b_{\sigma(i)} < b_{\sigma(j)}$$
 whenever $i < j$

(b) We consider the interval I = [0, 1] which we divide into n equal subintervals $I_k := \left[\frac{k}{n}, \frac{k+1}{n}\right]$. A *n*-step function on I is a function which is constant on each of the I_k ... Given two *n*-step functions X and Z, we shall say that $X^{\sim}Z$ if X and Z have the same law. Let X and Y be two strictly increasing *n*-step functions. Show that, for all $Z^{\sim}X$, we have

$$\int_0^1 ZY \le \int_0^1 XY$$

(c) Show the same result when X and Y are L^2 functions on [0, 1]. It is called the Hardy-Littlewood inequality (Hint: use the fact that the set of all *n*-step functions, $n \ge 1$, is dense in L^2)