Assignment \#2
To be handed in Friday, October 23

1. Question 1

(a) Let X be a Gaussian variable with mean $m=10^{6} \$$ and standard deviation $\sigma=3 \times 10^{5} \$$. Compute $V @ R(X)$ and $A V @ R(X)$ at the level $\lambda=1 \%$
(b) Let Y be another variable, independent from X and with the same law. Compute $V @ R(X+Y)$ and $A V @ R(X+Y)$ at the level $\lambda=$ 1%

2. Question 2

I have to pay back $10^{6} \$$ exactly one year from now, and I have a zerocoupon bond, maturing in exactly ten years, with face value $1.4 \times 10^{6} \$$. On the day the loan comes due, I will sell the bond, and use the proceeds to pay off the loan. What is the present (ie discounted using today's interest rate) $V @ R$ of my position at the level 1% ? The yield curve is assumed to be flat and to remain so. The interest rate today is 3%. The interest rate one year from now will be $r \%$, where r is a lognormal random variable with mean $m=3 \%$ and standard deviation $\sigma=2 \%$.

3. Question 3.

Let X be a random variable, $F_{X}(x)$ its distribution function and $q_{X}(u)$ its quantile, $0 \leq u \leq 1$. It is assumed that X is uniformly bounded and F is continuous and strictly increasing.
(a) Show that $U(\omega)=F_{X}(X(\omega))$ is a uniformly distributed random variable, i.e. $P[U \leq \lambda]=\lambda$
(b) Show that $q_{X}(U(\omega))=X(\omega)$
(c) Show that, for any bounded measurable function $f(x)$, we have:

$$
\int_{-\infty}^{\infty} f(X) d P=\int_{0}^{1} f\left(q_{X}(u)\right) d u
$$

4. Question 4
(a) Prove that, given two sets of n numbers:

$$
\begin{aligned}
& a_{1}, a_{2}, \ldots, a_{n-1}, a_{n} \text { with } a_{i}<a_{j} \text { when } i<j \\
& b_{1}, b_{2}, \ldots b_{n-1}, b_{n} \text { with } b_{i} \neq b_{j} \text { when } \mathrm{i} \neq j
\end{aligned}
$$

and a permutation σ of $\{1,2, \ldots, n-1, n\}$, the sum:

$$
S_{\sigma}:=\sum_{i=1}^{n} a_{i} b_{\sigma(i)}
$$

is largest when the $b_{\sigma(i)}$ are ordered:

$$
b_{\sigma(i)}<b_{\sigma(j)} \text { whenever } i<j
$$

(b) We consider the interval $I=[0,1]$ which we divide into n equal subintervals $I_{k}:=\left[\frac{k}{n}, \frac{k+1}{n}\right]$. A n-step function on I is a function which is constant on each of the I_{k}.. Given two n-step functions X and Z, we shall say that $X^{\sim} Z$ if X and Z have the same law.
Let X and Y be two strictly increasing n-step functions. Show that, for all $Z^{\sim} X$, we have

$$
\int_{0}^{1} Z Y \leq \int_{0}^{1} X Y
$$

(c) Show the same result when X and Y are L^{2} functions on $[0,1]$. It is called the Hardy-Littlewood inequality (Hint: use the fact that the set of all n-step functions, $n \geq 1$, is dense in L^{2})

