Homework 1 - to be handed back on Friday, October 16

1. In this question, we assume that the yield curve is flat, i.e. the interest rate r is constant across maturities. Time t is counted in years.
(a) Consider a zero-coupon bond with face value $100,000 \$$ and maturity T. What is its price P ? The interest rate changes from r to $r+\delta r$, where δr is small, and the price of the bond then changes from P to $P+\delta P$. Find:

$$
\frac{\delta P}{P}
$$

This is called the sensitivity of the bond. Compute its values for $r=3 \%, \delta r=0.01 \%, T=1$ and $T=30$
(b) Unfortunately, there are no zero-coupon bonds on that market. The only available bonds are two coupon bonds, bond S and bond L, both of which have nominal value $1,000 \$$, and yearly coupons with nominal interest 10%. The first one is exactly 1 year away from maturity, the second one is exactly 30 years away from maturity. Find their prices P_{S} and P_{L}. Find the sensitivities of these bonds. Compute their values for $r=3 \%, \delta r=0.01 \%, T=1$ and $T=30$
(c) I want to duplicate a 10 -year zero-coupon with face value 100,000 $\$($ bond $Z)$ with the two existing bonds. Find x_{1} and x_{2} such that the portfolio consisting of x_{1} bonds S and x_{2} bonds L has the same value and the same sensitiviy as bond Z (note that x_{1} and/or x_{2} are allowed to be negative)
2. In this question, X is a reflexive B-space and $F: X \longrightarrow R \cup\{+\infty\}$ is a convex l.s.c function on X. Compute the following in terms of the Fenchel transform $F^{*}: X^{*} \longrightarrow R \cup\{+\infty\}:$
(a) G^{*}, where $G(x):=\lambda F(x)+a$, where $\lambda>0$ and a are constants.
(b) G^{*}, where $G(x):=F(x)+\left\langle y^{*}, x-y\right\rangle$, where $y \in X$ and $y^{*} \in X^{*}$ are given
(c) G^{*}, where $G(x):=F(x)+\delta\left(x \mid X_{0}\right)$, where $X_{0} \subset X$ is a closed linear subspace
3. Suppose $X=L^{\infty}$. Take a non-empty subset $A \subset X$ such that:

$$
\begin{aligned}
& \inf \{m \in R \mid m \in A\}>-\infty \\
X \in & A, Y \geq X \Longrightarrow Y \in A
\end{aligned}
$$

and define:

$$
\rho(X)=\inf (m \in R \mid m+X \in A)
$$

(a) Show that ρ is a monetary risk measure
(b) Show that ρ is convex if and only if A is convex
(c) Show that ρ is conherent if and only if A is a convex cone.

