Assignment \#3
To be handed in Friday, October 30

1. Let X_{t} be an Ito process defined by:

$$
d X=\mu(a-\ln X) X d t+\sigma X d W, \quad X_{0}=x
$$

where μ, a, σ, x are positive constants.
(a) Set $Y_{t}:=\ln X_{t}$ and express $d Y_{t}$ in terms of Y_{t}
(b) Find X_{t}
2. Consider the two Ito processes defined by:

$$
\begin{aligned}
d X & =\alpha_{1} X d t+\sigma_{1} X d W_{1}, \quad X_{0}=x>0 \\
d Y & =\alpha_{2} Y d t+\sigma_{2} Y d W_{2}, \ldots Y_{0}=y>0
\end{aligned}
$$

where $\alpha_{1}, \alpha_{2}, \sigma_{1}, \sigma_{2}, x, y$ are deterministic constants and W_{1} and W_{2} are independent BMs. Define a third Ito process by:

$$
Z_{t}=\frac{X_{t}}{X_{t}+Y_{t}}
$$

Express $d Z$ in terms of $Z, d t, d W_{1}$ and $d W_{2}$
3. Let X_{t} be an Ito process defined by:

$$
d X=\mu d t+\sigma X d W, \quad X_{0}=x
$$

where μ, σ, x are positive constants.
(a) Find the expectation and the variance of X_{t}
(b) Compute $d\left(Z_{t} X_{t}\right)$ where

$$
Z_{t}=\exp \left(-\sigma W_{t}+\frac{1}{2} \sigma^{2} t\right)
$$

(c) Express X_{t} in terms of s and $W_{s}, 1 \leq s \leq t$ (the expression will involve an integral)

