Assignment #3 To be handed in Friday, October 30

1. Let X_t be an Ito process defined by:

$$dX = \mu \left(a - \ln X \right) X dt + \sigma X dW, \quad X_0 = x$$

where μ , a, σ , x are positive constants.

- (a) Set $Y_t := \ln X_t$ and express dY_t in terms of Y_t
- (b) Find X_t
- 2. Consider the two Ito processes defined by:

$$dX = \alpha_1 X dt + \sigma_1 X dW_1, \quad X_0 = x > 0$$

$$dY = \alpha_2 Y dt + \sigma_2 Y dW_2, \dots Y_0 = y > 0$$

where $\alpha_1, \alpha_2, \sigma_1, \sigma_2, x, y$ are deterministic constants and W_1 and W_2 are independent BMs. Define a third Ito process by:

$$Z_t = \frac{X_t}{X_t + Y_t}$$

Express dZ in terms of Z, dt, dW_1 and dW_2

3. Let X_t be an Ito process defined by:

$$dX = \mu dt + \sigma X dW, \quad X_0 = x$$

where μ , σ , x are positive constants.

- (a) Find the expectation and the variance of X_t
- (b) Compute $d(Z_t X_t)$ where

$$Z_t = \exp\left(-\sigma W_t + \frac{1}{2}\sigma^2 t\right)$$

(c) Express X_t in terms of s and W_s , $1 \le s \le t$ (the expression will involve an integral)