
THE LOCAL LEHMER INEQUALITY FOR DRINFELD MODULES

DRAGOS GHIOCA

Abstract. We give a lower bound for the local height of a non-torsion element of a Drinfeld
module.

1. Introduction

The classical Lehmer conjecture (see [12], page 476) asserts that there is an absolute
constant C > 0 so that any algebraic number α that is not a root of unity satisfies the
following inequality for its logarithmic height

h(α) ≥ C

[Q(α) : Q]
.

The best known general result towards this conjecture is obtained in [5] (see also Section
2.1 of [16] for a review of all results known so far towards Lehmer conjecture). The analog
of Lehmer conjecture for elliptic curves and abelian varieties has also been much studied
(see [1], [2], [11], [13], [16]). The paper [3] formulated a conjecture whose general form is
Conjecture 1.1, which we refer to as the Lehmer inequality for Drinfeld modules.

Our notation for Drinfeld modules follows the one from [10]: p is a prime number and q
is a power of p. We denote by Fq the finite field with q elements. We let C be a nonsingular
projective curve defined over Fq and we fix a closed point ∞ on C. Then we define A as the
ring of functions on C that are regular everywhere except possibly at ∞.

We let K be a field extension of Fq. We fix a morphism i : A → K. We define the operator
τ as the power of the usual Frobenius with the property that for every x, τ(x) = xq. Then
we let K{τ} be the ring of polynomials in τ with coefficients from K (the addition is the
usual one, while the multiplication is the composition of functions).

We fix an algebraic closure of K, denoted Kalg. We denote by Ksep the separable closure
of K. We denote by Falg

p the algebraic closure of Fp inside Kalg.
A Drinfeld module over K is a ring morphism φ : A → K{τ} for which the coefficient of

τ 0 in φa is i(a) for every a ∈ A, and there exists a ∈ A such that φa 6= i(a)τ 0. Following
the definition from [10] we call φ a Drinfeld module of generic characteristic if ker(i) = {0}
and we call φ a Drinfeld module of finite characteristic if ker(i) 6= {0}. In the latter case,
we say that the characteristic of φ is ker(i) (which is a prime ideal of A). In the generic
characteristic case we assume i extends to an embedding of Frac(A) into K.

If γ ∈ Kalg \ {0}, we denote by φ(γ) the Drinfeld module over Kalg mapping a ∈ A to
γ−1φaγ. The Drinfeld module φ(γ) is isomorphic to φ over K(γ) (see [10]).

For each field L containing K, φ(L) denotes the A-module L with the A-action given by
φ. We call x ∈ L torsion if there exists a nonzero a ∈ A such that φa(x) = 0. The set of all
torsion elements of φ is denoted by φtor.
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Let ĥ be the global height associated to the Drinfeld module φ as in [17] (see also Section 3).

Conjecture 1.1. Let K be a finitely generated field. For any Drinfeld module φ : A →
K{τ} there exists a constant C > 0 such that any non-torsion point x ∈ Kalg satisfies

ĥ(x) ≥ C
[K(x):K]

.

Before our work, the only known partial result towards Conjecture 1.1 was obtained in
[3], which proved the conjecture restricted to the case in which φ is the Carlitz module and
x is a non-torsion point in Ksep.

In this paper we develop a theory of local heights ĥv for Drinfeld modules over arbitrary
fields of characteristic p (see Section 2). We will prove in Sections 5 and 6 certain lower
bounds for the local height of an element, in case that local height is positive. Because
torsion elements have all the local heights equal to 0 (see Section 2), our results represent
local versions of Lehmer type inequalities for Drinfeld modules.

In all of the theorems that we will state in the present section, for a valuation v, the positive
real number d(v) represents the degree of the valuation v (as introduced in Section 2). For
each finite extension L of K, we let ML be the set of all discrete valuations on the field L.

In Section 5 we prove the following result.

Theorem 1.2. Let K be a field of characteristic p and let φ : A → K{τ} be a Drinfeld
module of finite characteristic. Let v0 ∈ MK and let d(v0) be be the degree of v0. There exists
C > 0 and k ≥ 1, both depending only on φ, such that if x ∈ Kalg and v ∈ MK(x), v|v0 and

ĥv(x) > 0, then

ĥv(x) ≥ Cd(v)

e(v|v0)k−1

where d(v) = d(v0)f(v|v0)
[K(x):K]

and e(v|v0) is the ramification index and f(v|v0) is the relative degree

between the residue field of v and the residue field of v0.

Remark 1.3. With the notation from Theorem 1.2, e(v|v0) ≤ [K(x) : K] and d(v) ≥ d(v0)
[K(x):K]

.

Hence, the conclusion of Theorem 1.2 gives

(1) ĥv(x) ≥ Cd(v0)

[K(x) : K]k
.

Because the global height of a point is the sum of its local heights and all the local heights
are non-negative, (1) shows that if x is a non-torsion point, then

(2) ĥ(x) ≥ Cd(v0)

[K(x) : K]k
,

for some valuation v0 of K. Moreover, the proof of Theorem 1.2 gives explicit values of C
and k in terms of φ.

If K is a finitely generated field, then we can view K as the function field of a projective,
normal variety V defined over a finite field. Then we consider the set of valuations on K
associated with irreducible subvarieties of V of codimension 1. We define the degrees d(v0)
in terms of intersection multiplicities (see Chapter 2 in [15]) and so, we have a positive lower
bound for them depending on V . Hence, if K is finitely generated, we obtain a positive
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bound C1 depending on φ (and V ) such that if x is a non-torsion point, then

(3) ĥ(x) ≥ C1

[K(x) : K]k
.

In the case that the place v from Theorem 1.2 is not wildly ramified above K, we prove a
finer result and we show this result is the best possible.

We prove in Section 6 a similar result as in Theorem 1.2 for Drinfeld modules of generic
characteristic.

Theorem 1.4. Let K be a field of characteristic p. Let v0 ∈ MK and let d(v0) be the degree
of v0. Let φ : A → K{τ} be a Drinfeld module of generic characteristic. There exist two
positive constants C and k depending only on φ such that for every x ∈ Kalg and every place

v of K(x), if ĥv(x) > 0 and v does not lie over the place ∞ of Frac(A), then

ĥv(x) ≥ Cd(v)

e(v|v0)k−1
,

where v0 ∈ MK lies below v.

Remark 1.5. The same reasoning as in Remark 1.3 shows that if K is the function field of a
variety V defined over a finite field, then there exists a positive constant C1 depending only

on φ (and V ) such that if x ∈ Kalg satisfies ĥv(x) > 0 for some place v of K(x) which does
not lie over the place ∞ of Frac(A), then

(4) ĥ(x) ≥ C1

[K(x) : K]k
.

We show that the hypothesis from Theorem 1.4 that v does not lie over the place ∞ of

Frac(A) canot be removed. If v lies over ∞, then ĥv(x) can be positive but arbitrarily small.
Also, in case v satisfies the additional hypothesis that is not wildly ramified above K, we
prove a finer inequality and show that it is best possible.

Our proof of Theorems 1.2 and 1.4 goes through a series of lemmas involving a careful
analysis of the valuations at v of a point x and its iterates under the action of the Drinfeld
module. In Section 4 we provide the general definitions, notation and lemmas which are
valid for both finite and generic characteristic Drinfeld modules. Then in Sections 5 and 6
we treat in more depth the Lehmer conjecture for the finite and, respectively the generic
characteristic Drinfeld modules.

Extending the methods of the present paper we were able to prove in [9] (see also Chapter
7 of [7]) certain Mordel-Weil type theorems for Drinfeld modules. We were also able to prove
in [9] (see also Chapter 7 of [7]) upper bounds for the size of the torsion of a Drinfeld module
over certain fields. The key to our results from [7] and [9] is a study of the global version
of the Lehmer inequality for Drinfeld modules. A brief introduction to the global height
associated to a Drinfeld module is given in Section 3 of our present paper. Moreover, our
height inequalities which led to the Mordell-Weil theorems of [9] and [7] were also used in
[8] to prove a certain Mordell-Lang type statement for Drinfeld modules. Finally, because of
the examples we provide in this paper (see Examples 5.13 and 6.1), we see that the results
of Theorems 1.2 and 1.4 are the best that we can get towards a local version of Lehmer
inequality for Drinfeld modules, which in turn shows that for proving Conjecture 1.1 one
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will need to employ different techniques than in the present paper, involving possibly a
simultaneous analysis at all places.

The results of the present paper were part of my PhD thesis written under the supervision
of Thomas Scanlon. I thank him for having been the best adviser a PhD student could have.
I also thank the anonymous referee for his comments.

2. Local heights associated to Drinfeld modules

We continue with the notation from Section 1. So, K is a field extension of Fq and
φ : A → K{τ} is a Drinfeld module. We normalize all the discrete valuations v ∈ MK so
that the range of v is Z. In general, every discrete valuation we work with will have range
Z.

We associate to each valuation v ∈ MK a positive number d(v), which we call degree. If L
is a finite extension of K and w ∈ ML lies over v, i.e. w|v, then the degree of w is defined to

be d(v)f(w|v)
[L:K]

. The motivation for the degree function is given in Section 3 when we construct

the global height function associated to a Drinfeld module.
Let φ : A → K{τ} be a Drinfeld module. Let v ∈ MK and let d(v) be the degree of

v. For such v, we construct the local height ĥv with respect to the Drinfeld module φ.
Our construction follows [14]. For x ∈ K and v ∈ U , we set ṽ(x) = min{0, v(x)}. For a
non-constant element a ∈ A, we define

(5) Vv(x) = lim
n→∞

ṽ(φan(x))

deg(φan)
.

This function is well-defined and satisfies the same properties as in Propositions 1-3 from
[14]. Mainly, we will use the following facts:

1) if x and all the coefficients of φa are integral at v, then Vv(x) = 0.
2) for all b ∈ A \ {0}, Vv(φb(x)) = deg(φb) · Vv(x). Moreover, we can use any non-constant

a ∈ A for the definition of Vv(x) and we will always get the same function Vv.
3) Vv(x± y) ≥ min{Vv(x), Vv(y)}.
4) if x ∈ φtor, then Vv(x) = 0.
We define then

(6) ĥv(x) = −d(v)Vv(x).

Using fact 4) above, we conclude that if x ∈ φtor, ĥv(x) = 0.
If L is a finite extension of K and w ∈ ML lies over v, then we define similarly the function

Vw on L and just as above, we let ĥw(x) = −d(w)Vw(x) for every x ∈ L.

3. The global height function associated to Drinfeld modules

In the present section we will show how we can put together all the local height functions
corresponding to a suitable set of valuations and define the global height associated to a
Drinfeld module. Our construction will put in perspective our results on the local Lehmer
conjecture for Drinfeld modules, by constructing a bridge between our present paper and
[9]. For more details about our construction of the global height function associated to a
Drinfeld module see Chapter 4 of [7].
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Definition 3.1. We call a subset U ⊂ MK equipped with a degree function d : U → R>0 a
good set of valuations if the following properties are satisfied

(i) for every nonzero x ∈ K, there are finitely many v ∈ U such that v(x) 6= 0.
(ii) for every nonzero x ∈ K, ∑

v∈U

d(v) · v(x) = 0.

When U is a good set of valuations, we will refer to property (ii) as the sum formula for
U .

Definition 3.2. Let v ∈ MK of degree d(v). We say that the valuation v is coherent (on
Kalg) if for every finite extension L of K,

(7)
∑

w∈ML
w|v

e(w|v)f(w|v) = [L : K],

where e(w|v) is the ramification index and f(w|v) is the relative degree between the residue
field of w and the residue field of v.

Condition (7) says that v is defectless in L. As before, we also let the degree of any
w ∈ ML, w|v be

(8) d(w) =
f(w|v)d(v)

[L : K]
.

As shown in [6] (see (18.1), page 136), v ∈ MK is coherent if and only if for every finite
extensions L1 ⊂ L2 of K and for every w ∈ ML1 , if w|v, then w is defectless in L2.

Definition 3.3. We let UK be a good set of valuations on K. We call UK a coherent good
set of valuations (on Kalg) if for every v ∈ UK , the valuation v is coherent (on Kalg).

Remark 3.4. In Definition 3.3, using the argument from page 9 of [15], we conclude that for
every finite extension L of K, if UL ⊂ ML is the set of all valuations lying over valuations
from UK , then UL is a good set of valuations.

An important example of a coherent good set of valuations is given by the set of discrete
valuations associated to the divisors of a projective variety, which is regular in codimension
1. In particular, there always exist coherent good sets of valuations on finitely generated

fields K. The global height ĥ from Conjecture 1.1 is associated to such a coherent good set
of valuations. For more details see [7] or [9].

If U = UK ⊂ MK is a coherent good set of valuations, then for each v ∈ U , we denote by

ĥU,v the local height associated to φ with respect to v (the construction of ĥU,v is the one
from Section 2). Then we define the global height associated to φ as

(9) ĥU(x) =
∑
v∈U

ĥU,v(x).

For each x, the above sum is finite due to fact 1) stated above (see also Proposition 6 of
[14]).

For each finite extension L of K, we let UL be the set of all valuations of L that lie over
places from UK . Then we define the global height of x as

ĥUL
(x) =

∑
w∈UL

ĥUL,w(x).

5



The following Claim shows that our definition of the global height is independent of the
field L containing x.

Claim 3.5. Let L1 ⊂ L2 be finite extensions of K. Let v ∈ UL1 and x ∈ L1. Then∑
w∈UL2

w|v

ĥUL2
,w(x) = ĥUL1

,v(x).

Proof. We have ∑
w∈UL2

w|v

ĥUL2
,w(x) = −

∑
w∈UL2

w|v

d(w)Vw(x).

Let v0 ∈ MK lie below both v and w. Because d(w) = d(v0)f(w|v0)
[L2:K]

and d(v) = d(v0)f(v|v0)
[L1:K]

and

f(w|v0) = f(w|v)f(v|v0) and [L2 : K] = [L2 : L1] · [L1 : K], we conclude

(10) d(w) =
d(v)f(w|v)

[L2 : L1]
.

Using (10) and Vw(x) = e(w|v)Vv(x) we get∑
w∈UL2

w|v

ĥUL2
,w(x) =

−d(v)Vv(x)

[L2 : L1]

∑
w∈UL2

w|v

e(w|v)f(w|v).

Because v is defectless in L2 (because v0 is coherent) and ĥUL1
,v(x) = −d(v)Vv(x), we are

done. �

4. A local formulation of the Lehmer inequality for Drinfeld modules

The setting for this section is the same as before: K is a field of characteristic p, v0 is a
valuation on K of positive degree d(v0) and φ : A → K{τ} is a Drinfeld module.

The following statement would imply Conjecture 1.1 and we refer to it as the local case
of the Lehmer inequality for Drinfeld modules.

Statement 4.1. Let v0 ∈ MK and let d(v0) be the degree of v0. For the Drinfeld module
φ : A → K{τ} there exists a constant C > 0, depending only on φ, such that for any

x ∈ Kalg and any place v|v0 of K(x), if ĥv(x) > 0, then ĥv(x) ≥ Cd(v0)
[K(x):K]

.

In Section 5 we will prove that Statement 4.1 is false but in the case of Drinfeld modules
of finite characteristic we have Theorem 1.2, which we restate here.

Theorem 4.2. Let K be a field of characteristic p and let φ : A → K{τ} be a Drinfeld
module of finite characteristic. Let v0 ∈ MK and let d(v0) be the degree of v0. There exist
C > 0 and k ≥ 1, both depending only on φ, such that if x ∈ Kalg and v ∈ MK(x), v|v0 and

ĥv(x) > 0, then ĥv(x) ≥ Cd(v)
e(v|v0)k−1 .

Before going further on, we want to point out that the field K is part of the data associated
to the Drinfeld module φ and so, any constant C as in Theorem 4.2 might also depend on
the field K. Also, at the beginning of the proof of Theorem 4.2 we will (possibly) replace
K by a finite extension and we will explain how the constant C will be affected by this
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change. Finally, just to make things clearer, we will point out during key steps while proving
Theorem 4.2 what is the dependence of C in terms of φ.

An immediate corollary to Theorem 4.2 is the following.

Corollary 4.3. With the notation from Theorem 4.2, if L is a finite extension of K(x) and

w ∈ ML lies above v, then ĥw(x) ≥ Cd(w)
e(w|v0)k−1 .

Proof. The proof is immediate once we note that ĥw(x) = d(w)e(w|v)
d(v)

ĥv(x) and e(w|v0) =

e(w|v)e(v|v0) and e(w|v) ≥ 1. �

Moreover if p does not divide e(v|v0), then we can give a very easy expression for the
exponent k in Theorem 4.2. If p does not divide e(v|v0), our value for k is optimal, as shown
by Example 5.13 (see Theorem 5.15).

As Example 6.1 will show, there are infinitely many Drinfeld modules φ : A → K{τ}
of generic characteristic and there exists v0 ∈ MK such that for every C > 0 and every k,

there exists x ∈ Kalg and there exists v|v0, v ∈ MK(x) such that 0 < ĥv(x) < C
[K(x):K]k

. In

Theorem 6.2, we will give the best result towards Statement 4.1 for Drinfeld modules of
generic characteristic.

Before proving Theorem 4.2 we will first prove a series of lemmas. The results of this
section are valid for both finite and generic characteristic Drinfeld modules. As before, for

each finite extension L of K and for each v ∈ ML such that v|v0, we let d(v) = f(v|v0)d(v0)
[L:K]

.

We first observe that if L is a finite extension of K and v ∈ ML lies above v0, then

(11) d(v) =
d(v0)f(v|v0)

[L : K]
≥ d(v0)

[L : K]
.

Hence, in proving Theorem 4.2, replacing K by a finite extension L may induce only a
constant factor [L : K] in the denominator of the lower bound for the local height (see
Corollary 4.3 and inequality (11)).

Fix a nonconstant t ∈ A and let φt =
∑r

i=r0
aiτ

i, where both ar0 and ar are nonzero and
0 ≤ r0 ≤ r, while r ≥ 1. Theorem 4.2 is not affected if we replace φ by a Drinfeld module
that is isomorphic to φ. Thus we can conjugate φ by an element γ ∈ Kalg \ {0} such that

φ(γ), the conjugated Drinfeld module, has the property that φ
(γ)
t is monic as a polynomial

in τ . Then φ and φ(γ) are isomorphic over K(γ), which is a finite extension of K (because
γ satisfies the equation γqr−1ar = 1).

So, we will prove Theorem 4.2 for φ(γ) and because ĥφ,v(x) = ĥφ(γ),v(γ
−1x) for every place

v|v0 of K(γ, x) (as proved in [14], Proposition 2) the result will follow for φ.

From now on, in this section, φt is monic as a polynomial in τ .

Let L be a finite extension of K and let v ∈ ML be a place lying over v0. Denote by
S = SL the subset of ML where the coefficients ai, for i ∈ {r0, . . . , r − 1}, have poles. Also,
denote by S0 = SK the set of places in MK where the coefficients ai have poles. Thus, v ∈ S
if and only if v0 ∈ S0.

Definition 4.4. Let φ : A → K{τ} be a Drinfeld module. Let L be a finite extension of
K. We call v ∈ ML a place of good reduction for φ if for all a ∈ A \ {0}, the coefficients of
φa are integral at v and the leading coefficient of φa is a unit in the valuation ring at v. If
v ∈ ML is not a place of good reduction, we call it a place of bad reduction.
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Lemma 4.5. The set SL is the set of all places in ML at which φ has bad reduction.

Proof. By the construction of the set SL, the places in SL are of bad reduction for φ. We
will prove that these are all the bad places for φ.

Let a ∈ A. The equation φaφt = φtφa will show that all the places where not all of the
coefficients of φa are integral, are in SL. Suppose this is not the case and take a place v /∈ SL

at which some coefficient of φa is not integral. Let φa =
∑r′

i=0 a′iτ
i and assume that i is the

largest index for a coefficient a′i that is not integral at v.
We equate the coefficient of τ i+r in φaφt and φtφa, respectively. The former is

(12) a′i +
∑
j>i

a′ja
qj

r+i−j

while the latter is

(13) a′q
r

i +
∑
j>i

ar+i−ja
′qr+i−j

j .

Thus the valuation at v of (12) is v(a′i), because all the a′j (for j > i) and ar+i−j are integral

at v, while v(a′i) < 0. Similarly, the valuation of (13) is v(a′q
r

i ) = qrv(a′i) < v(a′i) (r ≥ 1
because t is non-constant). This fact gives a contradiction to φaφt = φtφa. So, the coefficients
of φa for all a ∈ A, are integral at all places of ML \ SL.

Now, using the same equation φaφt = φtφa and equating the leading coefficients in both
polynomials we obtain

a′r′ = a′q
r

r′ .

So, a′r′ ∈ Falg
p . Thus, all the leading coefficients for polynomials φa are constants. So, if

v ∈ ML \ SL, then all the coefficients of φa are integral at v and the leading coefficient of φa

is a unit in the valuation ring at v for every a ∈ A \ {0}. Thus, v /∈ SL is a place of good
reduction for φ. �

Definition 4.6. For each v ∈ ML denote by

(14) Mv = min
i∈{r0,...,r−1}

v(ai)

qr − qi

where by convention, as always, v(0) = +∞. If r0 = r, definition (14) is void and in that
case we define Mv = +∞.

Note that Mv < 0 if and only if v ∈ S.
For each v ∈ S we fix a uniformizer πv ∈ L of the place v. We define next the concept of

angular component for every y ∈ L \ {0}.

Definition 4.7. Assume v ∈ S. For every nonzero y ∈ L we define the angular component

of y at v, denoted by acπv(y), to be the residue at v of yπ
−v(y)
v . (Note that the angular

component is never 0.)

We can define in a similar manner as above the notion of angular component at each
v ∈ ML but we will work with angular components at the places from S only.

The main property of the angular component is that for every y, z ∈ L \ {0},
v(y − z) > min{v(y), v(z)} = v(y) = v(z) if and only if

(v(y), acπv(y)) = (v(z), acπv(z)).
8



Definition 4.8. If v ∈ S we define Pv as the set containing {0} and all the negatives of the
slopes of the Newton polygon of φt, i.e. numbers of the form

(15) α = −v(ai)− v(aj)

qi − qj
=

v(ai)− v(aj)

qj − qi
,

for some i 6= j in {r0, . . . , r} such that

v(ai) + qiα = v(aj) + qjα = min
r0≤l≤r

(
v(al) + qlα

)
.

Definition 4.9. For each α ∈ Pv we let l ≥ 1 and let i0 < i1 < · · · < il be all the indices i
for which ai 6= 0 and

v(ai) + qiα = min
r0≤j≤r

(
v(aj) + qjα

)
.

Then, for j, k ∈ {0, . . . , l} with j 6= k, we have

(16)
v(aij)− v(aik)

qik − qij
= α.

We define Rv(α) as the set containing {1} and all the nonzero solutions of the equation

(17)
l∑

j=0

acπv(aij)X
qij

= 0,

where the indices ij are the ones associated to α as in (16). Note that if α = 0, there might
be no indices ij and ik as in (16). In that case, the construction of Rv(0) from (17) is void
and so, Rv(0) = {1}. The motivation for the special case 0 ∈ Pv and 1 ∈ Rv(0) is explained
in the proof of Lemma 4.16.

Proposition 4.10. With the above definitions, |Pv| ≤ r − r0 + 1. Also, for each α ∈ Pv,
|Rv(α)| ≤ qr.

Proof. Clearly, |Pv| ≤ r − r0 + 1, because there are at most (r − r0) sides of the Newton
polygon of φt. Clearly, for every α ∈ Pv, |Rv(α)| ≤ qr, because there are at most (qr − 1)
nonzero solutions to (17). �

We remind the reader that our setting for this section will always be that v0 ∈ MK and
for a finite extension L of K, the place v ∈ ML lies over v0.

Lemma 4.11. Assume v ∈ S and let x ∈ L. If v(φt(x)) > mini∈{r0,...,r} v(aix
qi
) then

(v(x), acπv(x)) ∈ Pv ×Rv(v(x)).

Proof. If v(φt(x)) > mini∈{r0,...,r} v(aix
qi
) it means that there exists l ≥ 1 and

i0 < · · · < il

such that

(18) v(ai0x
qi0 ) = · · · = v(ailx

qil ) = min
i∈{r0,...,r}

v(aix
qi

)

and also

(19)
l∑

j=0

acπv(aij) acπv(x)qij
= 0.

9



Equations (18) and (19) yield v(x) ∈ Pv and acπv(x) ∈ Rv(v(x)) respectively, according to
(15) and (17). �

Lemma 4.12. Let v ∈ ML and let x ∈ L. If v(x) < min{0, Mv}, then ĥv(x) = −d(v) · v(x).

Proof. For every i ∈ {r0, . . . , r−1}, v(aix
qi
) = v(ai)+ qiv(x) > qrv(x) because v(x) < Mv =

mini∈{r0,...,r−1}
v(ai)
qr−qi . This shows that v(φt(x)) = qrv(x) < v(x) < min{0, Mv}. By induction,

v(φtn(x)) = qrnv(x) for all n ≥ 1. So, Vv(x) = v(x) and

ĥv(x) = −d(v) · v(x).

�

An immediate corollary to Lemma 4.12 is the following result.

Lemma 4.13. Assume v /∈ S and let x ∈ L. If v(x) < 0 then ĥv(x) = −d(v) · v(x), while if

v(x) ≥ 0 then ĥv(x) = 0.

Proof. First, it is clear that if v(x) ≥ 0 then for all n ≥ 1, v(φtn(x)) ≥ 0 because all the
coefficients of φt and thus of φtn have non-negative valuation at v. Thus Vv(x) = 0 and so,

ĥv(x) = 0.

Now, if v(x) < 0, then v(x) < Mv because Mv ≥ 0 (v /∈ S). So, applying the result of
Lemma 4.12 we conclude the proof of this lemma. �

We will get a better insight into the local heights behaviour with the following lemma.

Lemma 4.14. Let x ∈ L. Assume v ∈ S and v(x) ≤ 0. If (v(x), acπv(x)) /∈ Pv × Rv(v(x))
then v(φt(x)) < Mv, unless q = 2, r = 1 and v(x) = 0.

Proof. Lemma 4.11 implies that there exists i0 ∈ {r0, . . . , r} such that for all i ∈ {r0, . . . , r}
we have v(aix

qi
) ≥ v(ai0x

qi0 ) = v(φt(x)).
Suppose Lemma 4.14 is not true and so, there exists j0 < r such that

v(aj0)

qr − qj0
≤ v(φt(x)) = v(ai0) + qi0v(x).

This means that

(20) v(aj0) ≤ (qr − qj0)v(ai0) + (qr+i0 − qi0+j0)v(x).

On the other hand, by our assumption about i0, we know that v(aj0x
qj0 ) ≥ v(ai0x

qi0 ) which
means that

(21) v(aj0) ≥ v(ai0) + (qi0 − qj0)v(x).

Putting together inequalities (20) and (21), we get

v(ai0) + (qi0 − qj0)v(x) ≤ (qr − qj0)v(ai0) + (qr+i0 − qi0+j0)v(x).

Thus

(22) v(x)(qr+i0 − qi0+j0 − qi0 + qj0) ≥ −v(ai0)(q
r − qj0 − 1).

But qr+i0 − qi0+j0 − qi0 + qj0 = qr+i0(1 − qj0−r − q−r + qj0−r−i0) and because j0 < r and
qj0−r−i0 > 0, we obtain

(23) 1− qj0−r − q−r + qj0−r−i0 > 1− q−1 − q−r ≥ 1− 2q−1 ≥ 0.
10



Also, qr − qj0 − 1 ≥ qr − qr−1 − 1 = qr−1(q − 1) − 1 ≥ 0 with equality if and only if q = 2,
r = 1 and j0 = 0. We will analyze this case separately. So, as long as we are not in this
special case, we do have

(24) qr − qj0 − 1 > 0.

Now we have two possibilities (remember that v(x) ≤ 0):
(i) v(x) < 0
In this case, (22), (23) and (24) tell us that −v(ai0) < 0. Thus, v(ai0) > 0. But we

know from our hypothesis on i0 that v(ai0x
qi0 ) ≤ v(xqr

) which is in contradiction with the
combination of the following facts: v(x) < 0, i0 ≤ r and v(ai0) > 0.

(ii) v(x) = 0
Then another use of (22), (23) and (24) gives us −v(ai0) ≤ 0; thus v(ai0) ≥ 0. This would

mean that v(ai0x
qi0 ) ≥ 0 and this contradicts our choice for i0 because we know from the

fact that v ∈ S, that there exists i ∈ {r0, . . . , r} such that v(ai) < 0. So, then we would have

v(aix
qi

) = v(ai) < 0 ≤ v(ai0x
qi0 ).

Thus, in either case (i) or (ii) we get a contradiction that proves the lemma except in the
special case that we excluded above: q = 2, r = 1 and j0 = 0. If we have q = 2 and r = 1
then

φt(x) = a0x + x2.

By the definition of S and because v ∈ S, v(a0) < 0. Also, Mv = v(a0).
If v(x) < 0, then either v(x) < Mv = v(a0), in which case again v(φt(x)) < Mv (as shown

in the proof of Lemma 4.12), or v(x) ≥ Mv. In the latter case,

v(φt(x)) = v(a0x) = v(a0) + v(x) < v(a0) = Mv.

So, we see that indeed, only v(x) = 0, q = 2 and r = 1 can make v(φt(x)) ≥ Mv in the
hypothesis of Lemma 4.14. �

Lemma 4.15. Assume v ∈ S and let x ∈ L. Excluding the case q = 2, r = 1 and v(x) = 0,

we have that if v(x) ≤ 0 then either ĥv(x) > −d(v)Mv

qr or (v(x), acπv(x)) ∈ Pv ×Rv(v(x)).

Proof. If v(x) ≤ 0 then

either : (i) v(φt(x)) < Mv ,

in which case by Lemma 4.12 we have that ĥv(φt(x)) = −d(v) ·v(φt(x)). So, case (i) yields

(25) ĥv(x) = −d(v) · v(φt(x))

deg φt

> −d(v) · Mv

qr

or : (ii) v(φt(x)) ≥ Mv ,

in which case, Lemma 4.14 yields

(26) v(φt(x)) > v(ai0x
qi0 ) = min

i∈{r0...,r}
v(aix

qi

).

Using (26) and Lemma 4.11 we conclude that case (ii) yields (v(x), acπv(x)) ∈ Pv×Rv(v(x)).
�

Now we analyze the excluded case from Lemma 4.15.
11



Lemma 4.16. Assume v ∈ S and let x ∈ L. If v(x) ≤ 0, then either

(v(x), acπv(x)) ∈ Pv ×Rv(v(x))

or ĥv(x) ≥ −d(v)Mv

qr .

Proof. Using the result of Lemma 4.15 we have left to analyze the case: q = 2, r = 1 and
v(x) = 0.

As shown in the proof of Lemma 4.14, in this case φt(x) = a0x + x2 and

v(φt(x)) = v(a0) = Mv < 0.

Then, either v(φt2(x)) = v(φt(x)2) = 2Mv < Mv or v(φt2(x)) > v(a0φt(x)) = v(φt(x)2). If
the former case holds, then by Lemma 4.12,

ĥv(φt2(x)) = −d(v) · 2Mv

and so,

ĥv(x) =
−d(v) · 2Mv

4
.

If the latter case holds, i.e. v(φt(φt(x))) > v(a0φt(x)) = v(φt(x)2), then acπv(φt(x)) satisfies
the equation

acπv(a0)X + X2 = 0.

Because the angular component is never 0, it must be that acπv(φt(x)) = acπv(a0) (remember
that we are working now in characteristic 2). But, because v(a0x) < v(x2) we can relate the
angular component of x and the angular component of φt(x) and so,

acπv(a0) = acπv(φt(x)) = acπv(a0x) = acπv(a0) acπv(x).

This means acπv(x) = 1 and so, the excluded case amounts to a dichotomy similar to the

one from Lemma 4.15: either (v(x), acπv(x)) = (0, 1) or ĥv(x) = −d(v)Mv

2
. The definitions of

Pv and Rv(α) from (15) and (17) respectively, yield that (0, 1) ∈ Pv ×Rv(0). �

Finally, we note that in Lemma 4.16 we have

−d(v)Mv

qr
= −d(v)e(v|v0)Mv0

qr
.

We have obtained the following dichotomy (see also Proposition 4.10).

Lemma 4.17. Assume v ∈ S and let x ∈ L. If v(x) ≤ 0 then either

ĥv(x) ≥ −d(v)e(v|v0)Mv0

qr

or
(v(x), acπv(x)) ∈ Pv ×Rv(v(x))

with |Pv| ≤ r − r0 + 1 and for each α ∈ Pv, |Rv(α)| ≤ qr.

The following lemma shows that if (v(x), acπv(x)) /∈ Pv ×Rv(v(x)), then v(φt(x)) is deter-
mined completely only in terms of v(x).

Lemma 4.18. There are no x and x′ in L verifying the following properties
(a) v(x) 6= v(x′);
(b) (v(x), acπv(x)) /∈ Pv ×Rv(v(x)) and (v(x′), acπv(x

′)) /∈ Pv ×Rv(v(x′));
(c) v(φt(x)) = v(φt(x

′)).
12



Proof. Condition (b) and Lemma 4.11 yield

v(φt(x)) = min
r0≤i≤r

v(aix
qi

)

and
v(φt(x

′)) = min
r0≤i≤r

v(aix
′qi

).

Then the conclusion of our lemma is immediate because the function

F (y) = min
r0≤i≤r

v(aiy
qi

)

is a strictly increasing piecewise linear function. �

Lemma 4.19. Assume v ∈ S. Given (α1, γ1), there are at most qr possible values of acπv(x)
when x ranges over nonzero elements of L such that (v(x), acπv(x)) /∈ Pv × Rv(v(x)) and
(α1, γ1) = (v(φt(x)), acπv(φt(x))).

Proof. Indeed, we saw in Lemma 4.18 that v(x) is uniquely determined given α1 = v(φt(x))
under the hypothesis of Lemma 4.19. We also have

(27) acπv(φt(x)) =
∑

j

acπv(aij) acπv(x)qij

where ij runs through a prescribed subset of {r0, . . . , r} corresponding to those i such that

v(ai) + qiv(x) = v(φt(x)) = mini∈{r0,...,r} v(aix
qi
). This subset of indices ij, depends only

on α1 = v(x). So, there are at most qr possible values for acπv(x) to solve (27) given
γ1 = acπv(φt(x)). �

5. The finite characteristic case

We continue with the notation from the previous section. Hence, φ : A → K{τ} is a
Drinfeld module. Also, for some t ∈ A,

φt =
r∑

i=r0

aiτ
i,

with ar = 1. As before we let L be a finite extension of K and let x ∈ L. Finally, S, Mv, Pv,
Rv are defined as in Section 4. In this section, unless otherwise stated, we will assume that

r0 ≥ 1, i.e. φ has finite characteristic and φt is inseparable.

Because for every Drinfeld module of finite characteristic we can find a non-constant t ∈ A
such that φt is inseparable, the above boxed condition will always be achieved for some t ∈ A,
in the case of Drinfeld modules of finite characteristic.

Our strategy for proving Theorem 4.2 will be to prove that if ĥv(x) > 0 then either

ĥv(x) ≥ Cd(v)

e(v|v0)
r
r0
−1

where C > 0 is a constant depending only on φ, or

v ∈ S and (v(x), acπv(x)) belongs to a set of cardinality we can control.

Lemma 5.1. If v ∈ S define Nv := max
{
−v(ai)
qi−1

| r0 ≤ i ≤ r
}

(remember our convention

v(0) = +∞). If v (x) ≥ Nv, then ĥv(x) = 0.
13



Proof. Using the definition of Nv, if v(x) ≥ Nv then qiv(x)+v(ai) ≥ v (x), for every i. Hence

v (φt (x)) ≥ min
1≤i≤r

{qiv (x) + v (ai)} ≥ v(x) ≥ Nv.

By induction, we get that v(φtn(x)) ≥ Nv for all n ≥ 1, which yields that Vv(x) = 0 and so,

ĥv (x) = 0.

�

Thus, if v ∈ S and ĥv(x) > 0 it must be that v (x) < Nv.

Lemma 5.2. Assume v ∈ S and let x ∈ L. If v(x) < Nv and if (v(x), acπv(x)) /∈ Pv ×
Rv(v(x)) then v(φt(x)) < v(x). Moreover, if i0 ∈ {r0, . . . , r} such that v(ai0x

qi0 ) = v(φt(x)),

then v(x) <
−v(ai0

)

qi0−1
.

Proof. Indeed, by the hypothesis and by Lemma 4.11, there exists i0 ∈ {r0, . . . , r} such that
for all i ∈ {r0, . . . , r},
(28) v(ai0) + qi0v(x) = v(φt(x)) ≤ v(ai) + qiv(x).

If v(φt(x)) ≥ v(x) then, using (28), we get that

v(x) ≤ v(ai) + qiv(x)

which implies that v(x) ≥ −v(ai)
qi−1

for every i. Thus

v(x) ≥ Nv,

contradicting the hypothesis of our lemma. So, we must have v(φt(x)) < v(x). In particular,
we also get that v(ai0) + qi0v(x) < v(x), i.e.

(29) v(x) <
−v(ai0)

qi0 − 1
.

�

Our goal is to establish a dichotomy similar to the one from Lemma 4.17 under the
following hypothesis:

v ∈ S, x ∈ L, ĥv(x) > 0 and 0 < v(x) < Nv.

In Lemma 5.2 we saw that if v(x) < Nv then either (v(x), acπv(x)) ∈ Pv × Rv(v(x)) or
v(φt(x)) < v(x). In the latter case, if v(φt(x)) > 0 we apply then the same reasoning to φt(x)
and derive that either (v(φt(x)), acπv(φt(x))) ∈ Pv × Rv(v(φt(x))) or v(φt2(x)) < v(φt(x)).
We repeat this analysis and, since v(x) and all v(ai) are integers, after a finite number of
steps, say n, we must have that either

v(φtn(x)) ≤ 0

or
(v(φtn(x)), acπv(φtn(x))) ∈ Pv ×Rv(v(φtn(x))).

But we analyzed in Lemma 4.17 what happens to the cases in which, for an element y of
positive local height at v, v(y) ≤ 0. We obtained that either

(30) ĥv(y) ≥ −d(v)Mv0e(v|v0)

qr

14



or

(31) (v(y), acπv(y)) ∈ Pv ×Rv(v(y))

and |Pv| ≤ r − r0 + 1 ≤ r because r0 ≥ 1.
We will use repeatedly equations (30) and (31) for y = φtn(x). So, if (30) holds for

y = φtn(x) then

(32) ĥv(x) ≥ −d(v)Mv0e(v|v0)

qrnqr
.

We will see next what happens if (31) holds. We can go back through the steps that we
made in order to get to (31) and see that actually v(x) and acπv(x) belong to prescribed sets
of cardinality independent of n.

Lemma 5.3. Assume v ∈ S and suppose that v(x) < Nv. If

(v(φtk(x)), acπv(φtk(x))) /∈ Pv ×Rv(v(φtk(x)))

for 0 ≤ k ≤ n− 1, then for each value

(αn, γn) = (v(φtn(x)), acπv(φtn(x))),

the valuation of x is uniquely determined and acπv(x) belongs to a set of cardinality at most

qr2−r.

Proof. The fact that v(x) is uniquely determined follows after n successive applications of
Lemma 4.18 to φtn−1(x), . . . , φt(x), x.

Because (v(φtk(x)), acπv(φtk(x))) /∈ Pv ×Rv(v(φtk(x))) for k < n, then Lemma 4.11 shows
that for each k < n we are solving an equation of the form

(33)
∑

j

acπv(aij) acπv(φtk(x))qij
= acπv(φtk+1(x))

in order to express acπv(φtk(x)) in terms of acπv(φtk+1(x)) for each k < n. The equations (33)
are uniquely determined by the sets of indices ij ∈ {r0, . . . , r} which in turn are uniquely
determined by v(φtk(x)), i.e. for each k and each corresponding index ij

(34) v(aijφtk(x)qij
) = min

i∈{r0,...,r}
v(aiφtk(x)qi

).

Using the result of Lemma 5.2 and the hypothesis of our lemma, we see that

(35) v(x) > v(φt(x)) > v(φt2(x)) > · · · > v(φtn(x))

and so the equations from (33) appear in a prescribed order. Now, in most of the cases,
these equations will consist of only one term on their left-hand side; i.e. they will look like

(36) acπv(ai0) acπv(φtk(x))qi0 = acπv(φtk+1(x)).

Equation (36) has a unique solution. The other equations of type (33) but not of type (36)
are associated to some of the values of v(φtk(x)) ∈ Pv. Indeed, according to the definition of
Pv from (15), only for those values (of the slopes of the Newton polygon of φt) we can have
for i 6= i′

(37) v(ai) + qiv(x) = v(ai′) + qi′v(x)

and so, both indices i and i′ can appear in (33).
15



Thus the number of equations of type (33) but not of type (36) is at most r − 1, because
there are at most r − r0 different segments (with different slopes) in the Newton polygon of
φt (and also, remember that we are working under the assumption that φt is inseparable,
i.e. r0 ≥ 1). Moreover these equations will appear in a prescribed order, each not more
than once, because of (35). These observations determine the construction of the finite set
that will contain all the possible values for acπv(x), given γn = acπv(φtn(x))). An equation
of type (33) can have at most qr solutions; thus acπv(x) lives in a set of cardinality at most

qr2−r. �

Because of the result of Lemma 5.3, we know that we can construct in an unique way v(x)
given v(φtn(x)) and the fact that for every j < n, φtj(x) does not satisfy (31).

Definition 5.4. With the notation as in Lemma 5.3, for each n there are at most |Pv| values
for v(x) such that

(38) (v(φtn(x)), acπv(φtn(x))) ∈ Pv ×Rv(v(φtn(x)))

and (38) does not hold for n′ < n. We denote by Pv(n) this set of values for v(x). Clearly
Pv(0) = Pv.

Lemma 5.3 yields that for each fixed (αn, γn) ∈ Pv × Rv(αn), there are at most qr2−r

possible values for acπv(x) such that

(v(φtn(x)), acπv(φtn(x))) = (αn, γn)

and φtj(x) does not satisfy (31) for j < n.

Definition 5.5. With the above notation, for α = v(x) ∈ Pv(n) we define by Rv,n(α) the
set of all possible values for acπv(x) such that (38) holds. Clearly, Rv,0 = Rv.

Let α ∈ Pv(n) and v(φtn(x)) = αn ∈ Pv as in Definition 5.5. Using the definition of Rv(αn)
for αn ∈ Pv from (17), we get

(39) |Rv,0((v(φtn(x)))| ≤ qr.

Inequality (39) and the result of Lemma 5.3 gives the estimate:

(40) |Rv,n(α)| ≤ |Rv,0(v(φtn(x)))| · qr2−r ≤ qr · qr2−r = qr2

for every α ∈ Pv(n) and for every n ≥ 0.
Now, we estimate the magnitude of n, i.e. the number of steps that we need to make

starting with 0 < v(x) < Nv such that in the end φtn(x) satisfies either (30) or (31).

Lemma 5.6. Assume v ∈ S and ĥv(x) > 0. Then there exists a positive constant c1

depending only on φ and v0 (the place lying below v), and there exists an integer m bounded
above in terms of φ and e(v|v0) such that either for some n ≤ m, v(x) ∈ Pv(n) and acπv(x) ∈
Rv,n(v(x)), or ĥv(x) > c1d(v)

e(v|v0)
r
r0

−1 .

Proof. If (31) does not hold for x then we know that there exists i0 ≥ r0 such that v(φt(x)) =
qi0v(x) + v(ai0).

Now, if φt(x) also does not satisfy (31) then for some i1

v(φt2(x)) = qi1v(φt(x)) + v(ai1) ≤ qiv(φt(x)) + v(ai)
16



for all i ∈ {r0, . . . , r}. So, in particular

(41) v(φt2(x)) ≤ qi0v(φt(x)) + v(ai0)

and in general

(42) v(φtk+1(x)) ≤ qi0v(φtk(x)) + v(ai0)

if (v(φtk(x)), acπv(φtk(x))) /∈ Pv ×Rv(v(φtk(x))). Let us define the sequence (yj)j≥0 by

y0 = v(x) and for all j ≥ 1: yj = qi0yj−1 + v(ai0).

If φti(x) does not satisfy (31) for i ∈ {0, . . . , n− 1} then by (42),

(43) yn ≥ v(φtn(x)).

The sequence (yj)j≥0 can be easily computed and we see that

(44) yj = qi0j

(
v(x) +

v(ai0)

qi0 − 1

)
− v(ai0)

qi0 − 1
.

But v(x) < −v(ai0
)

qi0−1
, as a consequence of v(x) < Nv and Lemma 5.2 (see equation (29)).

Thus,

(45) v(x) +
v(ai0)

qi0 − 1
≤ − 1

qi0 − 1

because v(x), v(ai0) ∈ Z. Using inequality (45) in the formula (44) we get

(46) yj ≤
1

qi0 − 1
(−qi0j − v(ai0)).

We define

(47) cv0 = max {−v0(ai)|r0 ≤ i ≤ r} .

So, cv0 ≥ 1 because we know that at least one of the ai has a pole at v, thus at v0 (we are
working under the assumption that v ∈ S). Clearly, cv0 depends only on φ (the dependence
on K is part of the Drinfeld module data for φ). For simplicity, we denote cv0 by c. Because
of the definition of c, we have

(48) − v(ai0) ≤ e(v|v0)c.

Now, if we pick m minimal such that

(49) qr0m ≥ ce(v|v0)

then we see that m depends only on φ and e(v|v0). Using that i0 ≥ r0 we get that

(50) qi0m ≥ ce(v|v0).

So, using inequalities (46), (48) and (50) we obtain ym ≤ 0. Because of (43) we derive that

v(φtm(x)) ≤ 0

which according to the dichotomy from Lemma 4.17 yields that φtm(x) satisfies either (30)
or (31). Thus, we need at most m steps to get from x to some φtn(x) for which one of the
two equations (30) or (31) is valid. This means that either

(51) ĥv(x) ≥ −d(v)Mv0e(v|v0)

qrmqr
(which holds if (30) is valid after n ≤ m steps),
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or

(52) φtn(x) satisfies (31) for n ≤ m.

This last equation implies that (v(x), acπv(x)) ∈ Pv(n)×Rv,n(v(x)) for some n ≤ m.
We analyze now the inequality from equation (51). By the minimality of m satisfying

(49), we have

(53) qrm = (qr0(m−1))
r
r0 qr < (ce(v|v0))

r
r0 qr.

So, if (51) holds, we have the following inequality

(54) ĥv(x) >
−d(v)Mv0e(v|v0)

c
r
r0 q2re(v|v0)

r
r0

.

To simplify the notation in the future we introduce new constants ci, that will always depend
only on φ (and K). For example, Mv0 is a negative number which is at most − 1

qr−1
and so,

(54) says that

(55) ĥv(x) >
c1d(v)

e(v|v0)
r
r0
−1

or for some n ≤ m, (v(x), acπv(x)) ∈ Pv(n)×Rv,n(v(x)).

Moreover, |Rv,n(v(x))| ≤ qr2
. �

Remark 5.7. If K is the function field of a projective, normal variety V defined over a
finite field, and we construct the set of valuations associated to irreducible subvarieties of
codimension 1 in V , then there are finitely many places of bad reduction in K and so, we
can choose c1 > 0 as in Lemma 5.6 bounded from below only in terms of φ (by taking
the minimum over all the finitely many positive constants we obtain for the places of bad
reduction in K).

For the convenience of the reader we restate the exact findings of Lemma 5.6 in a separate
corollary.

Corollary 5.8. Assume v ∈ S and ĥv(x) > 0. Let c = maxi{−v0(ai)}. Let m be the least
integer such that qr0m ≥ ce(v|v0). There exists a positive constant c1 depending only on φ
such that either for some n ≤ m,

(v(x), acπv(x)) ∈ Pv(n)×Rv,n(v(x))

or ĥv(x) > c1d(v)

e(v|v0)
r
r0

−1 . Moreover, if the former case holds, then |Rv,n(v(x))| ≤ qr2
.

The following combinatorial lemma will be used in the proof of Theorem 4.2.

Lemma 5.9. Let L be a field extension of Fq and let v be a discrete valuation on L. Let I
be the sequence of integers consisting of

α
(1)
1 = α

(2)
1 = · · · = α

(l1)
1 < α

(1)
2 = · · · = α

(l2)
2 < · · · < α(1)

g = · · · = α(lg)
g ,

where each l1, . . . , lg are positive integers. Let l :=
∑g

i=1 li be the cardinality of the sequence
I.

Let N be an integer greater or equal than all the elements of I. For each α ∈ I, let R(α)
be a nonempty finite set of nonzero elements of the residue field at v. Let W be an Fq-vector
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subspace of L with the property that for all w ∈ W , if v(w) ≤ N , then there exist α
(j)
i ∈ I,

such that v(w) = α
(i)
j and acπv(w) ∈ R(α

(i)
j ).

Let f be the smallest positive integer greater or equal than maxα∈I logq |R(α)|. Then the
Fq-codimension of {w ∈ W | v(w) > N} is bounded above by lf .

Proof. Let α
(1)
(g+1) = N + 1. For 1 ≤ j ≤ g + 1, define Wj = {w ∈ W |v(w) ≥ α

(1)
j }. For

1 ≤ j ≤ g, the hypothesis gives an injection

Wj/Wj+1 → ∪li
i=1R(α

(i)
j ) ∪ {0}

taking w to the residue of w/π
α

(1)
j

v . Thus

qdimFq Wj/Wj+1 ≤ liq
f + 1 < qlif+1,

so dimFq Wj/Wj+1 ≤ lif (note that we used the fact that f > 0 in order to have the inequality
liq

f + 1 < qlif+1). Summing over j gives dimFq W1/Wg+1 ≤ lf , as desired. �

We are ready to prove Theorem 4.2.

Proof of Theorem 4.2. From our assumption, ĥv(x) > 0. Because φ is a Drinfeld module of
finite characteristic, there exists a non-constant t ∈ A such that φt is inseparable.

First we observe that if v /∈ S then by Lemma 4.13, v(x) < 0 (otherwise ĥv(x) = 0). Then,

using again Lemma 4.13, we get ĥv(x) = −d(v) · v(x) ≥ d(v), as v(x) < 0. Hence, if v /∈ S,
we already obtained the desired inequality (with k = 1 and C = 1). So, from now on we
suppose that the valuation v is in S.

Let f be the smallest positive integer such that

f ≥ max
α∈P

logq |Rv(α)|.

So f ≤ r2, as shown by the proof of Lemma 5.6 (see Corollary 5.8). We also have the
following inequality (see Corollary 5.8)

(56) z :=
m∑

n=0

|Pv(n)| ≤ r(m + 1) (because |Pv(n)| ≤ r for every n).

Let W = Span({x, φt(x), . . . , φtzf (x)}). Because ĥv(x) > 0 we know that x /∈ φtor and so,

dimFq W = 1 + zf . We also get from ĥv(x) > 0 that for all 0 6= w ∈ W , ĥv(w) > 0. Then by
Lemma 5.1, we get that for all 0 6= w ∈ W , v(w) ≤ Nv − 1.

We apply Lemma 5.9 to W with I being the sequence of all elements in ∪0≤n≤mPv(n)
(appearing as many times as they appear in the different sets Pv(n)), R(α) = Rv,n(α)
(for each α in each set Pv(n)) and N = Nv − 1. Because z =

∑m
n=0 |Pv(n)| and f ≥

maxα∈P logq |Rv(α)|, we conclude that there exists 0 6= b ∈ Fq[t], of degree at most zf in t
such that

(57) (v(φb(x)), acπv(φb(x))) /∈
⋃

0≤n≤m

(Pv(n)×Rv,n(v(φb(x)))) .

We know that ĥv(x) > 0 and so ĥv(φb(x)) > 0. Equations (57) and (55) yield

ĥv(φb(x)) >
c1d(v)

e(v|v0)
r
r0
−1

.
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Thus

ĥv(x) >
c1d(v)

qr deg(b)e(v|v0)
r
r0
−1

.

But, using inequality (56), we obtain

qr deg(b) ≤ qrzf ≤ qr4(m+1) = qr4

(qrm)r3

.

We use (53) and we get

qr deg(b) < qr4

(ce(v|v0))
r
r0
·r3

qr4

.

Thus there exists a constant C > 0 depending only on c1, c, q and r such that

(58) ĥv(x) >
Cd(v)

e(v|v0)
r4+r

r0
−1

.

Because c1 and c depend only on φ we get the conclusion of Theorem 4.2. �

Remark 5.10. From the above proof we see that the constant C depends only on q, r and
the numbers v0(ai) for r0 ≤ i ≤ r− 1, under the hypothesis that φt is monic as a polynomial
in τ . As we said before, for the general case, when φt is not neccessarily monic, the constant
C from Theorem 4.2 will be multiplied by the inverse of the degree of the extension of K
that we have to allow in order to construct an isomorphic Drinfeld module φ(γ) for which

φ
(γ)
t is monic. The degree of this extension is at most (qr − 1) because γqr−1ar = 1.

Remark 5.11. It is interesting to note that (58) shows that Statement 4.1 holds, i.e. k = 1, in
the case that e(v|v0) = 1, which is the case when x belongs to an unramified extension above
v0. Also, as observed in the beginning of the proof of Theorem 4.2, if v and so, equivalently
v0 is not a pole for any of the ai then we automatically get exponent k = 1 in Theorem 4.2,
as proved in Lemma 4.13.

So, we see that in the course of proving Theorem 4.2 we got an even stronger result
that allows us to conclude that Statement 4.1 and so, implicitly Conjecture 1.1 hold in the
maximal extension unramified above the finitely many places in S0.

Remark 5.12. Also, it is interesting to note that the above proof shows that for every place
v associated to L (as in Section 2), there exists a number n depending only on r and e(v|v0)
so that there exists b ∈ Fq[t] of degree at most n in t for which either v(φb(x)) < Mv (in

which case ĥv(x) > 0), or v(φb(x)) ≥ Nv (in which case ĥv(x) = 0).

Example 5.13. The result of Theorem 4.2 is optimal in the sense that we cannot hope to
get the conjectured Lehmer inequality for the local height, i.e. C

d
(where d is the degree of

the extension). We can only get, in the general case for the local height, an inequality with
some exponent k > 1, i.e. C

dk .
For example, take A = Fq[t], K = Fq(t) and define for some r ≥ 2,

φt = τ r − t1−qτ.

Let d = qm − 1, for some m ≥ r. Then let x = tα where α is a root of

αd − α− 1

t
= 0.
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Then L = K(x) is totally ramified above t of degree d. Let v be the unique valuation of L
for which v(t) = d. We compute

Pv =

{
−d(q − 1)

qr − q

}
Mv = −d(q − 1)

qr − q
Nv = d

v(x) = d− 1 = qm − 2.

We compute easily v(φti(x)) = d − qi for every i ∈ {0, . . . ,m}. Furthermore, v(φtm(x)) =

d−qm = −1 6= −d(q−1)
qr−q

, because −d(q−1)
qr−q

/∈ Z (since q does not divide d(q−1)). Thus v(φtm(x))

is negative and not in Pv and so, Lemma 4.14 yields

v(φtm+1(x)) < Mv.

Actually, because m ≥ r, an easy computation shows that

v(
φtm(x)q

tq−1
) = −q − d(q − 1) = −qm+1 + qm − 1 < −qr = v((φtm(x))qr

).

This shows that v(φtm+1(x)) = −qm+1 + qm − 1 < Mv < 0 and so, by Lemma 4.12

ĥv(x) =
ĥv(φtm+1(x))

qr(m+1)
=

qm+1 − qm + 1

qr(m+1)d
<

qm+1

qm+rq(r−1)md
<

q1−r

dr
,

because d = qm − 1 < qm.
This computation shows that for Drinfeld modules of type

φt = τ r − t1−qτ

the exponent k from Theorem 4.2 should be at least r. The exact same computation will
give us that in the case of a Drinfeld module of the form

φt = τ r − t1−qr0τ r0

for some 1 ≤ r0 < r and x of valuation (qr0m − 2) at a place v that is totally ramified above
the place of t with ramification index qr0m − 1, the exponent k in Theorem 4.2 should be
at least r

r0
. In Theorem 5.15 we will prove that for non-wildly ramified extensions above

places from S0, we get exponent k = r
r0

. But before doing this, we observe that the present
example is just a counter-example to Statement 4.1, not to Conjecture 1.1. In other words,
the global Lehmer inequality holds for our example even if the local one fails.

Indeed, because x was chosen to have positive valuation at the only place from S, then
there exists another place, call it v′ which is not in S, for which v′(x) < 0. But then by

Lemma 4.13, we get that ĥv′(x) ≥ 1
d
, which means that also ĥ(x) ≥ 1

d
. Thus we obtain a

lower bound for the global height as conjectured in Conjecture 1.1.

Now, in order to get to the result of Theorem 5.15 we prove a lemma.

Lemma 5.14. With the notation from the proof of Theorem 4.2, let

L = lcmi∈{1,...,r−r0}{qi − 1}.
If v is not wildly ramified above v0 (i.e., p does not divide e(v|v0)), then e(v|v0) divides Lα
for every α ∈ Pv(n) and every n ≥ 0.
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Proof. Indeed, from its definition (15), Pv contains {0} and integer numbers of the form

(59) α :=
v(ai)− v(aj)

qj − qi
=

e(v|v0) · (v0(ai)− v0(aj))

qi(qj−i − 1)
,

for j > i. Hence

(60) L · α =
L

qj−i − 1
· e(v|v0) · (v0(ai)− v0(aj))

qi
.

By definition,

(61)
L

qj−i − 1
∈ Z

because 1 ≤ j − i ≤ r− r0. Also, because by our assumption e(v|v0) is coprime with qi, and
because α ∈ Z, we conclude from (59) that

(62)
v0(ai)− v0(aj)

qi
∈ Z.

Using (61) and (62) in (60), we conclude e(v|v0) divides Lα.
The set Pv(1) contains numbers of the form

(63) α1 :=
α− v(ai)

qi

where α ∈ Pv = Pv(0) and ai 6= 0. Using that p does not divide e(v|v0) and that e(v|v0) | Lα
we get that e(v|v0) | Lα1 for all α1 ∈ Pv(1). Repeating the process from (63) we obtain all
the elements of Pv(n) for every n ≥ 1 and, by induction on n, we conclude that e(v|v0) | Lαn

for all αn ∈ Pv(n). �

Theorem 5.15. Let K be a field of characteristic p. Let v0 ∈ MK and let d(v0) be the degree
of v0.

Let φ : A → K{τ} be a Drinfeld module of finite characteristic. Let t ∈ A such that
φt =

∑r
i=r0

aiτ
i is inseparable and assume ar0 6= 0. Let x ∈ Kalg and let v ∈ MK(x) be a

place lying over v0. Assume that ĥv(x) > 0.
There exists a constant C > 0 depending only on φ such that if v is not wildly ramified

above v0, then ĥv(x) ≥ Cd(v)

e(v|v0)
r
r0

−1 .

Proof. Just as we observed in Remark 5.10, it suffices to prove Theorem 5.15 under the
hypothesis that φt is monic in τ .

Let now d = [K(x) : K]. We observe again that from Lemma 4.13 it follows that if v /∈ S

then ĥv(x) ≥ d(v) ≥ d(v)

e(v|v0)
r
r0

−1 .

So, from now on we consider the case v ∈ S. First we obtain a sharper result than
Lemma 5.6 under our hypothesis that v|v0 is not wildly ramified.

Let i0 ≥ r0 be as in Lemma 5.6, i.e. such that v(φt(x)) = v(ai0x
qi0 ). Then, using the

result of Lemma 5.14 in (29) we see that

(64) v(x) +
v(ai0)

qi0 − 1
≤ −

e(v|v0)
L

qi0 − 1
,
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if v(x) ∈ P . Then also (46) changes into

(65) ym ≤ 1

qi0 − 1
(−qi0m e(v|w)

L
− v(ai0)).

So, then we choose m′ minimal such that

(66) qr0m′ ≥ cL

where c = cv0 is the same as in (47). Thus m′ depends only on φ and K, but the dependence
on K can be considered as part of the dependence on φ. We redo the computations from
(51) to (55), this time with m′ in place of m and because of (65) and (66), we get that

(67) ĥv(x) >
c1d(v)

e(v|v0)
r
r0
−1

or (v(x), acπv(x))) ∈ Pv(n)×Rv,n(v(x)) for some n ≤ m′..

At this moment we can redo the argument from the proof of Theorem 4.2 using
⋃

0≤n≤m′ Pv(n)

instead of
⋃

0≤n≤m Pv(n), only that now z′ :=
∑m′

n=0 |Pv(n)| is independent not only of x, but
also of e(v|v0). We conclude once again that there exists b, a polynomial in t of degree at
most z′f such that

ĥv(φb(x)) >
c1d(v)

e(v|v0)
r
r0
−1

.

But because both f and z′ depend only on φ, we conclude that indeed,

ĥ(x) ≥ Cd(v)

e(v|v0)
r
r0
−1

with C > 0 depending only on φ. �

6. The generic characteristic case

We continue with our notation from Section 4. The following example shows that we
cannot expect Theorem 1.2 be valid in full generality in the case the Drinfeld module has
generic characteristic.

Example 6.1. We discuss now Statement 4.1 for Drinfeld modules of generic characteristic.
Consider the Carlitz module defined on Fp[t] by φt = tτ 0 + τ , where τ(x) = xp for all x.
Take K = Fp(t). Let L be a finite extension of K which is totally ramified above ∞ and let
the ramification index equal d = [L : K]. Also, let v be the unique valuation of L sitting
above ∞.

Let x ∈ L be of valuation nd at v for some n ≥ 1. An easy computation shows that for
all m ∈ {1, . . . , n}, v(φtm(x)) = dn− dm. So, in particular v(φtn(x)) = 0 and so,

v(φtn+1(x)) = −d < Mv =
−d

p− 1
.

This shows, after using Lemma 4.12, that ĥv(φtn+1(x)) = d
d

= 1. This in turn implies that

ĥv(x) =
1

pn+1
.

But we can take n arbitrarily large, which shows that there is no way to obtain a result
similar to Theorem 4.2 for generic characteristic Drinfeld modules.
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The reader might recognize in this example the analytic uniformization at the place ∞ for
φ, present in Tamagawa’s proof for the rigidity of Drinfeld modules of generic characteristic
(see the proof of Theorem 4.13.9 from [10]). The idea is that over any function field, there
are points arbitrary close to 0 in the ∞-adic topology, which have arbitrary small positive
local height at ∞.

The next theorem shows that Example 6.1 is in some sense the only way Theorem 4.2 fails
for Drinfeld modules of generic characteristic.

Theorem 6.2. Let K be a field of characteristic p. Let v0 ∈ MK and let d(v0) be the degree
of v0.

Let φ : A → K{τ} be a Drinfeld module of generic characteristic. Let x ∈ Kalg and let v

be a place of K(x) that lies over v0. Assume ĥv(x) > 0.
If v0 does not lie over the place ∞ of Frac(A), then there exist two positive constants C

and k depending only on φ (and K) such that ĥv(x) ≥ Cd(v)
e(v|v0)k−1 .

Proof. Let t ∈ A be a non-constant element and φt = tτ 0 +
∑r

i=r0
aiτ

i, where ar0 and ar are
nonzero (and 1 ≤ r0 ≤ r).

Again, as we mentioned before, it suffices to prove this theorem under the hypothesis that
φt is monic in τ . Also, if v /∈ S, Theorem 6.2 holds as shown by Lemma 4.13.

The analysis of local heights from Section 4 applies to both finite and generic characteristic.

So, we still get the conclusion of Lemma 4.17. Thus, if v(x) ≤ 0 then either ĥv(x) ≥
−d(v)Mv0e(v|v0)

qr or (v(x), acπv(x)) ∈ Pv × Rv(v(x)), with |Pv| and |Rv(v(x))| depending only

on q and r (the upper bounds for their cardinalities are slightly larger than in the case of
a Drinfeld module of finite characteristic, because the maximal number of segments in the
Newton polygon for φt is r and not r − 1).

We know from our hypothesis (v does not lie over ∞) that v(t) ≥ 0 and so,

(68) v(tx) ≥ v(x).

Now, if v(x) ≥ Nv (with Nv defined as in Lemma 5.1), then v(aix
qi
) ≥ v(x), for all i ≥ r0

(by the definition of Nv) and using also equation (68), we get

v(φt(x)) ≥ v(x) ≥ Nv.

Iterating this computation we get that v(φtn(x)) ≥ Nv, for all n ≥ 1 and so, ĥv(x) = 0,
contradicting the hypothesis of our theorem. This argument is the equivalent of Lemma 5.1
for Drinfeld modules of generic characteristic under the hypothesis v(t) ≥ 0.

Thus it must be that v(x) < Nv. Then Lemma 5.2 holds identically. This yields that
either (v(x), acπv(x)) ∈ Pv ×Rv(v(x)) or v(φt(x)) < v(x).

From this point on, the proof continues just as for Theorem 4.2. We form just as before
the sets Pv(n). We conclude once again as in (54) that either

ĥv(x) ≥ −Mv0d(v)

q2rc
r
r0 e(v|v0)

r
r0
−1

with the same c > 0 depending only on q, r and φ as in the proof of Theorem 4.2, or

v(x) ∈ Pv(n) and acπv(x) ∈ Rv,n(v(x)) for some n ≤ m,
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where m is of the order of log e(v|v0). We observe that when we use equations (42), (44),
(45), (46) the index i0 is still at least r0 ≥ 1. This is the case because if v(x) < Nv and
(v(x), acπv(x)) /∈ Pv ×Rv(v(x)) then there exists i0 ≥ 0 such that

v(φt(x)) = v(ai0) + qi0v(x) = min
i∈{0}∪{r0,...,r}

v(aix
qi

).

But v(x) < Nv means that there exists at least one index i ∈ {r0, . . . , r} such that v(tx) ≥
v(x) > v(aix

qi
).

Finally, Lemma 5.9 finishes the proof of Theorem 6.2. �

So, we get the conclusion for Theorem 6.2 in the same way as in the proof of Theorem 4.2.
The difference made by v not lying above ∞ is that for v(x) ≥ 0, v(φt(x)) can decrease only

if v(x) < Nv, i.e. only if there exists i ≥ 1 such that v(aix
qi
) < v(x). If v lies over ∞, then

v(tx) < v(x) and so, v(φt(x)) might decrease just because of the tτ 0 term from φt. Thus, in
that case, as Example 6.1 showed, we can start with x having arbitrarily large valuation and
we are able to decrease it by applying φt to it repeatedly, making the valuation of φtn(x) be

less than Mv, which would mean that ĥv(x) > 0. But in doing this we will need a number

n of steps (of applying φt) that we will not be able to control; so ĥv(x) will be arbitrarily
small.

It is easy to see that Remarks 5.11 and 5.12 are valid also for Theorem 6.2 in the hypothesis
that v does not lie over the place ∞ of Frac(A). Also, just as we were able to derive
Theorem 5.15 from the proof of Theorem 4.2, we can do the same thing in Theorem 6.2 and
find a specific value of the constant k that will work in the case that v is not wildly ramified
above v0 ∈ MK . The result is the following theorem whose proof goes along the same lines
as the proof of Theorem 5.15.

Theorem 6.3. Let K be a field of characteristic p. Let v0 ∈ MK and let d(v0) be the
degree of v0. Let φ : A → K{τ} be a Drinfeld module of generic characteristic and let
φt = tτ 0 +

∑r
i=r0

aiτ
i, with ar0 6= 0 (of course, r0 ≥ 1). Assume v0 does not lie over the

place ∞ of Frac(A). There exists a constant C > 0, depending only on φ such that for every
x ∈ Kalg and every place v ∈ MK(x) such that v|v0 and v is not wildly ramified above v0, if

ĥv(x) > 0 then ĥv(x) ≥ Cd(v)

e(v|v0)
r
r0

−1 .

We can also construct an example similar to (5.13) which shows that constant k = r
r0

in

the above theorem is optimal. Indeed, if we take a Drinfeld module φ defined on Fq[t] by

φt = tτ 0 + t1−qr0τ r0 + τ r

and x as in example (5.13) then a similar computation will show that we cannot hope for an
exponent k smaller than r

r0
.

The constants C in Theorems 5.15, 6.2 and 6.3 and the constant k in Theorem 6.2 have
the same dependency on q, r and φ as explained in the proof of Theorem 4.2.
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