
A VARIANT OF A THEOREM BY AILON-RUDNICK FOR

ELLIPTIC CURVES

D. GHIOCA, L.-C. HSIA, AND T. J. TUCKER

Abstract. Given a smooth projective curve C defined over Q and given
two elliptic surfaces E1 −→ C and E2 −→ C along with sections σPi , σQi

(corresponding to points Pi, Qi of the generic fibers) of Ei (for i = 1, 2),

we prove that if there exist infinitely many t ∈ C(Q) such that for
some integers m1,t,m2,t, we have that [mi,t](σPi(t)) = σQi(t) on Ei (for
i = 1, 2), then at least one of the following conclusions must hold: either
(i) there exists an isogeny ψ : E1 −→ E2 and also there exist nontrivial
endomorphisms ϕi of Ei (for i = 1, 2) such that ϕ2(σP2) = ψ(ϕ1(σP1));
or (ii) Qi is a multiple of Pi for some i = 1, 2. A special case of our
result answers a conjecture made by Silverman.

1. Introduction

In [AR04], Ailon and Rudnick showed that for two multiplicatively inde-
pendent non-constant polynomials a, b ∈ C[x], there is a nonzero polynomial
h ∈ C[x], depending on a and b such that gcd(an−1, bn−1) | h for all positive
integer n. In this paper, we prove a similar result for elliptic curves; instead
of working with the multiplicative group Gm, we work with the group law on
an elliptic curve defined over a function field. The result of Ailon-Rudnick
relies crucially on the Serre-Ihara-Tate theorem (see [Lan65]), while our re-
sult relies crucially on recent Bogomolov type results for elliptic surfaces due
to DeMarco and Mavraki [DM].

Throughout our article, we work with elliptic surfaces over Q; more pre-
cisely, given a projective, smooth curve C defined over Q, an elliptic surface
E/C is given by a morphism π : E −→ C over Q where the generic fiber of π
is an elliptic curve E defined over K = Q(C), while for all but finitely many
t ∈ C(Q), the fiber Et := π−1({t}) is an elliptic curve defined over Q. Recall
that a section σ of π (i.e. a map σ : C −→ E such that π ◦ σ = id|C) gives
rise to a K-rational point of E. Conversely, a point P ∈ E(K) corresponds
to a section of π; if we need to indicate the dependence on P , we will denote
it by σP . So, for all but finitely many t ∈ C(Q), the intersection of the
image of σP in E with the fiber above t is a point Pt := σP (t) on the elliptic
curve Et := π−1({t}). For any integer k, the multiplication-by-k map [k]

2010 AMS Subject Classification: Primary 11G50; Secondary 11G35, 14G25. The
research of the first author was partially supported by an NSERC Discovery grant. The
second author was supported by MOST grant 104-2115-M-003-004-MY2. The third author
was partially supported by NSF Grant DMS-0101636.

1



2 D. GHIOCA, L.-C. HSIA, AND T. J. TUCKER

on E extends to a morphism on E ; if there is no risk of confusion, we still
denote the extension by [k].

We prove the following result.

Theorem 1.1. Let πi : Ei −→ C be elliptic surfaces over a curve C defined
over Q with generic fibers Ei, and let σPi , σQi be sections of πi (for i = 1, 2)

corresponding to points Pi, Qi ∈ Ei(Q(C)). If there exist infinitely many
t ∈ C(Q) for which there exist some m1,t,m2,t ∈ Z such that [mi,t]σPi(t) =
σQi(t) for i = 1, 2, then at least one of the following properties must hold:

(i) there exist isogenies ϕ : E1 −→ E2 and ψ : E2 −→ E2 such that
ϕ(P1) = ψ(P2).

(ii) for some i ∈ {1, 2}, there exists ki ∈ Z such that [ki]Pi = Qi on Ei.

We note here that, in contrast to similar results such as [AR04], the
ambient algebraic group (E1×E2 in our case, as opposed to Gm for [AR04])
need not be defined over the field of constants in k(C).

A special case of our result (when both Q1 and Q2 are the zero elements)
answers in the affirmative [Sil04b, Conjecture 7]; this is carried out in a more
general setting (over the complex numbers and also, giving a more precise
connection to the original GCD problem of Ailon-Rudnick) in our Proposi-
tion 4.3 from Section 4. We also note that the special case of Theorem 1.1
when Q1 = Q2 = 0 was solved by Masser and Zannier (see [MZ14]) when
both elliptic surfaces are defined over C.

Silverman’s question [Sil04b, Conjecture 7] was motivated by work of
Ailon-Rudnick [AR04], who showed that the greatest common divisor of
an−1 and of bn−1 for multiplicatively independent polynomials a, b ∈ C[T ]
has bounded degree (see also the generalization by Corvaja-Zannier [CZ13b]
along with the related results from [CZ08, CZ11, CZ13a]). In turn, the result
of Ailon-Rudnick was motivated by the work of Bugeaud-Corvaja-Zannier
[BCZ03] who obtained an upper bound for gcd(ak−1, bk−1) (as k varies in
N) for given a, b ∈ Q. On the other hand, Silverman [Sil04a] showed that the
degree of gcd(am− 1, bn− 1) could be quite large when a, b ∈ Fp[T ]; see also
the authors’ previous paper [GHT17], where (using as technical ingredient
[Ghi14] in place of [DM]) we study the gcd(am− 1, bn− 1) when a and b are
polynomials over arbitrary fields of positive characteristic, along with other
generalizations on the same theme. Finally, we mention the work of Denis
[Den11] who studied the same problem of the greatest common divisor in
the context of Drinfeld modules.

As hinted in [Sil04b], this greatest common divisor (GCD) problem may
be studied in much higher generality; for example, if one knew the result of
DeMarco-Mavraki [DM] (see Theorem 2.3) in the context of abelian varieties,
then our method would extend to a similar conclusion for arbitrary abelian
schemes over a base curve. DeMarco-Mavraki’s theorem can be interpreted
as an extension of Masser-Zannier’s theorem (see [MZ12]) in the same spirit
as Bogomolov conjecture is an extension of the classical Manin-Mumford
Conjecture. So, even though the extension to arbitrary abelian varieties
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of the results from [DM] is expected to be quite challenging, we mention
that there is some progress in this direction due to Cinkir [Cin11], Gubler
[Gub07], and Yamaki [Yam17], who proved various cases of the Bogomolov
conjecture for abelian varieties defined over function fields.

Our Theorem 1.1 is related also to [BC16, Theorem 1.1] (see also the
extension from [BC17]) where it is shown that given n linearly independent
sections Pi on the Legendre elliptic family y2 = x(x − 1)(x − t), there are
at most finitely many parameters t such that the points (Pi)t satisfy two
independent linear relations on the corresponding elliptic curve. Therefore,
a special case of the result by Barroero and Capuano is that given sections
P1, P2, Q1, Q2 on the Legendre elliptic surface, if these 4 sections are lin-
early independent, then there are at most finitely many t such that for some
mt, nt ∈ Z we have that [mt](P1)t = (Q1)t and [nt](P2)t = (Q2)t. However,
in our Theorem 1.1 we obtain the same conclusion under the weaker hy-
pothesis that Qi is not a multiple of Pi for i = 1, 2 and also that P1 and P2

are linearly independent. We also note that the constant case of Barroero-
Capuano’s theorem is covered by the results of Habegger-Pila [HP16].

A special case of our Theorem 1.1 bears a resemblance to the classical
Mordell-Lang problem proven by Faltings [Fal94] (see also [Hru96] for the
case of semiabelian varieties defined over function fields). Indeed, with the
notation as in Theorem 1.1, assume there exist infinitely many t ∈ C(Q)
such that for some mt ∈ Z we have

(1.2) [mt](Pi)t = (Qi)t for i = 1, 2.

Also assume there is no m ∈ Z such that [m]Pi = Qi for i = 1, 2. Then the
conclusion of Theorem 1.1 yields the existence of isogenies ϕ : E1 −→ E2

and ψ : E2 −→ E2 such that ϕ(P1) = ψ(P2). Thus, using that (1.2) holds
for infinitely many t ∈ C(Q) we see that

(1.3) ϕ(Q1) = ψ(Q2).

Therefore, if we let X ⊂ A := E1 × E2 be the 1-dimensional subscheme
corresponding to the section (Q1, Q2), and we let Γ ⊂ A be the cyclic
subgroup spanned by (P1, P2), then the existence of infinitely many γ ∈ Γ
such that for some t ∈ C(Q) we have γt ∈ X implies that X is contained in
a proper algebraic subgroup of A (as given by the equation (1.3)). Such a
statement can be viewed as a relative version of the classical Mordell-Lang
problem; note that if E1 and E2 are constant elliptic surfaces with generic
fibers E0

i defined over Q, while Γ ⊂ (E0
1 × E0

2)(Q), then this question is a
special case of Faltings’ theorem [Fal94] (formerly known as the Mordell-
Lang conjecture). It is natural to ask whether the above relative version
of the Mordell-Lang problem holds more generally when A −→ C is an
arbitrary semiabelian scheme, X ⊂ A is a 1-dimensional scheme and Γ ⊂ A
is an arbitrary finitely generated group. This more general question is also
related to the bounded height problems studied in [AMZ17] in the context
of pencils of finitely generated subgroups of Gn

m.
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In the next section of this paper, we review some preliminary material.
Following that, in Section 3, we prove Theorem 1.1. The proof in the case
of non-constant sections is quite similar to the proofs of the main results of
[AR04] and [HT17], while the case of constant sections requires a different
argument. In Section 4, we give a positive answer to Silverman’s conjecture
[Sil04b, Conjecture 7].

Acknowledgments. We thank Myrto Mavraki and Joe Silverman for
several useful conversations. We are grateful to the anonymous referee for
numerous comments and suggestions which improved our paper.

2. Preliminaries

From now on, we fix an elliptic surface π : E −→ C, where C is a pro-
jective, smooth curve defined over Q. We denote by E the generic fiber
of E ; this is an elliptic curve defined over Q(C). For all but finitely many
t ∈ C(Q), we have that Et := π−1({t}) is an elliptic curve defined over Q.

2.1. Isotriviality. We say that E is isotrivial if the j-invariant of the generic
fiber is a constant function (on C); for isotrivial elliptic surfaces E , all smooth
fibers of π are isomorphic (to the generic fiber E). If E is isotrivial, then
there exists a finite cover C ′ −→ C such that E ′ := E ×C C ′ is a constant
(elliptic) surface over C ′, i.e., there exists an elliptic curve E0 defined over
Q such that E ′ = E0×Spec(Q)C

′. Furthermore, for a constant elliptic surface

E0 ×Spec(Q) C
′, we say that σP is a constant section if P ∈ E0(Q).

2.2. Canonical height on an elliptic surface. For each t ∈ C(Q) such

that Et is an elliptic curve, we let ĥEt be the Néron-Tate canonical height for
the points in Et(Q) (for more details, see [Sil86]). There are two important
properties of the canonical height which we will use:

(1) ĥEt(Pt) = 0 if and only if Pt is a torsion point of Et, i.e., there exists
a positive integer k such that [k]Pt = 0.

(2) for each k ∈ Z we have that ĥEt([k]Pt) = k2 · ĥEt(Pt).
Also, we let ĥE be the Néron-Tate canonical height on the generic fiber E

constructed with respect to the Weil height on the function field Q(C) (for
more details, see [Sil94a]). Property (2) above holds also on the generic fiber,

i.e., ĥE([k]P ) = k2 · ĥE(P ). On the other hand, property (1) above holds
only if E is non-isotrivial. Furthermore, if E = E ×C C is a constant family
(where E is an elliptic curve defined over Q), then for any P ∈ E(Q(C)),

we have that ĥE(P ) = 0 if and only if P ∈ E(Q).

2.3. Variation of the canonical height. We let hC be a given Weil height
for points in C(Q) corresponding to a divisor of degree 1 on C.

Let σP be a section of the elliptic surface E −→ C corresponding to a
point P on the generic fiber E. Then, for all but finitely many t ∈ C(Q),
we have that the intersection of the image of σP in E with the fiber above t
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is a point Pt, on the elliptic curve Et. The following important fact will be
used in our proof (see [Tat83, Sil83]):

(2.1) lim
hC(t)→∞

ĥEt(Pt)

hC(t)
= ĥE(P ).

Furthermore, the following more precise result holds, as proven by Silverman
[Sil94b],

(2.2) ĥEt(Pt) = hC,η(P )(t) +OP (1),

where η(P ) is a divisor on C of degree equal to ĥE(P ) and hC,η(P ) is a given

Weil height for the points in C(Q) corresponding to the divisor η(P ), while
the implicit constant from the term OP (1) is only dependent on the section
σP (and implicitly on the divisor η(P )), but not on t ∈ C(Q).

2.4. Points of small height on sections. We will use the following re-
sult of DeMarco-Mavraki [DM, Theorem 1.4], which extends [DWY16] (and
in turn, uses the extensive analysis from [Sil94b] regarding the variation of
the canonical height in an elliptic fibration). We also note that the case of
isotrivial elliptic curves from Theorem 2.3 was previously proven by Zhang
[Zha98], as part of Zhang’s famous proof of the classical Bogomolov conjec-
ture.

Theorem 2.3 (DeMarco-Mavraki [DM]). Let E1, E2 be elliptic fibrations
over the same Q-curve C. Let Pi be a section of Ei (for i = 1, 2) with the
property that there exists an infinite sequence {tn} ⊂ C(Q) such that

lim
n→∞

ĥ(Ei)tn
((Pi)tn) = 0 for i = 1, 2.

Then there exist group homomorphisms φ : E1 −→ E2 and ψ : E2 −→ E2, not
both trivial, such that φ(P1) = ψ(P2).

3. Proof of our main result

Propositions 3.1 and 3.9 are key to our proof.

Proposition 3.1. Let C be a projective, smooth curve defined over Q, and
let hC(·) be a Weil height for the algebraic points of C corresponding to a
divisor of degree 1. Let P and Q be sections of an elliptic surface π : E −→ C
with generic fiber E, and assume there exists no k ∈ Z such that [k]P =

Q. In addition, assume ĥE(P ) > 0. If there exists an infinite sequence
{ti} ⊂ C(Q) such that for each i ∈ N there exists some mi ∈ Z such that

[mi]Pti = Qti, then hC(ti) is uniformly bounded and limi→∞ ĥEti (Pti) = 0.

We note that the special case of Proposition 3.1 when π : E −→ C is a
constant elliptic surface follows from [Sil83].
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Proof of Proposition 3.1. Since [mi]Pti = Qti , we have

(3.2) m2
i · ĥEti (Pti) = ĥEti (Qti).

Since [k]P 6= Q for any k ∈ Z and the sequence {ti} is infinite, then

(3.3) lim
i→∞
|mi| =∞.

We claim first that hC(ti) is uniformly bounded. Indeed, assuming (at
the expense, perhaps, of replacing {ti} by an infinite subsequence) that
limi→∞ hC(ti) = ∞, equation (2.1) coupled with equations (3.2) and (3.3)
yields a contradiction. To see this, we divide both sides of (3.2) by hC(ti)

and then take limits. Because ĥE(P ) > 0, equation (3.3) implies that the
left hand side equals

(3.4) lim
i→∞

m2
i ·
ĥEti (Pti)

hC(ti)
=∞,

while the right hand side equals

(3.5) lim
i→∞

ĥEti (Qti)

hC(ti)
= ĥE(Q) <∞,

which is a contradiction. So, indeed, we must have that hC(ti) is uniformly
bounded.

Next we prove that also ĥEti (Qti) is uniformly bounded. Using (2.2) (see

[Sil94b]), we know that there exists a divisor η(Q) of C of degree equal to

ĥE(Q) such that

(3.6) ĥEt(Qt) = hC,η(Q)(t) +O(1),

where hC,η(Q) is a Weil height on C(Q) corresponding to the divisor η(Q).
Since hC is a Weil height associated to a divisor D on C of degree 1, then
for any positive integer m > deg(η(Q)), the divisor D1 := mD − η(Q) has
positive degree and therefore, is ample. Then [HS00, Proposition B.3.2]
implies that any Weil height hC,D1 associated to the divisor D1 satisfies

hC,D1(t) ≥ O(1) for all t ∈ C(Q). So,

(3.7) mhC(t) +O(1) ≥ hC,η(Q)(t) for t ∈ C(Q).

Therefore hC,η(Q)(ti) is uniformly bounded (since hC(ti) is uniformly bounded).
Then equation (3.6) provides the desired claim that

(3.8) ĥEti (Qti) is bounded as i→∞.

Finally, the fact that limi→∞ ĥEi(Pi) = 0 follows easily from combining
equations (3.2), (3.3) and (3.8). �

Proposition 3.9. Let P and Q be sections of a constant elliptic fibration
π : E −→ C, and assume there exists no k ∈ Z such that [k]P = Q. In
addition, assume P is a non-torsion, constant section. If there exists an
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infinite sequence {ti} ⊂ C(Q) such that for each i ∈ N there exists some
mi ∈ Z such that [mi]Pti = Qti, then limi→∞ hC(ti) =∞.

Proof. We have that each fiber Eti is isomorphic to the generic fiber E0, and
so, because P is a constant section,

(3.10) ĥEti (Pti) = ĥE0(P 0),

where P 0 is the intersection of P with the generic fiber and ĥE0(·) is the
Néron-Tate canonical height of the elliptic curve E0 defined over Q (i.e., it
is not the canonical height on the generic fiber of E seen as an elliptic curve
defined over the function field Q(C)).

Furthermore, since P 0 is not a torsion point of E0, then ĥE0(P 0) > 0.
Thus, from the equality [mi]Pti = Qti , along with equation (3.10) coupled
with the fact that |mi| → ∞ (because [k]P 6= Q for all integers k), we must
have

(3.11) ĥEti (Qti) = m2
i ĥE0(P 0)→∞.

Then, using (2.2), we have

(3.12) ĥEti (Qti) = hC,η(Q)(ti) +O(1),

where hC,η(Q) is a Weil height on C corresponding to a certain divisor η(Q).
So, equations (3.11) and (3.12) yield hC,η(Q)(ti)→∞ and thus, hC(ti)→∞
(see [HS00, Proposition B.3.5], along with our similar argument from the
proof of Proposition 3.1). �

Now we can prove our main result.

Proof of Theorem 1.1. First we note that if Pi is a torsion section (for some
i ∈ {1, 2}), then conclusion (ii) holds trivially since then we would obtain
there exist infinitely many t ∈ C(Q) such that (Qi)t = [k](Pi)t for the same
integer k. So, from now on, we assume that, both P1 and P2 are non-torsion

sections on E1, E2 respectively. In particular, this means that if ĥEi(Pi) = 0,
then Ei must be an isotrivial elliptic surface.

We assume there exists an infinite sequence {ti} ⊂ C(Q) such that for each
i ∈ N there exist mi,1,mi,2 ∈ Z with the property that [mi,1](P1)ti = (Q1)ti
and also [mi,2](P2)ti = (Q2)ti . In addition, we assume conclusion (ii) does
not hold, i.e., there is no m ∈ Z such that [m]Pi = Qi for some i ∈ {1, 2}.
We split our analysis into two cases.

Case 1. ĥEi(Pi) > 0 for each i = 1, 2.
Applying then Proposition 3.1 to the sections Pi and Qi, we obtain

(3.13) lim
i→∞

ĥ(E1)ti ((P1)ti) = lim
i→∞

ĥ(E2)ti ((P2)ti) = 0.

Equation (3.13) along with Theorem 2.3 implies that conclusion (i) must
hold in Theorem 1.1. Note that we obtain in this case that the morphisms
ϕ : E1 −→ E2 and ψ : E2 −→ E2 from the conclusion of Theorem 2.3 are
both isogenies since P1 and P2 are non-torsion sections.
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Case 2. Either ĥE1(P1) = 0 or ĥE2(P2) = 0.

Without loss of generality, we assume ĥE1(P1) = 0. Therefore (since
P1 is not torsion) E1 is an isotrivial elliptic surface, and furthermore, at
the expense of replacing C by a finite cover (and also performing a base
extending for E1 and E2), we may assume that E1 is a constant family. Thus,
E1 = E0

1 ×C C for some elliptic curve E0
1 defined over Q. Then also P1 is

a constant (non-torsion) section, because ĥE1(P1) = 0. Finally, we let hC(·)
be a Weil height for the algebraic points of C with respect to a divisor of
degree 1.

If ĥE2(P2) > 0, then Proposition 3.1 applied to P2 and Q2 implies that
hC(ti) is uniformly bounded, which contradicts the conclusion of Proposi-

tion 3.9 applied to P1 and Q1. Therefore, we must have that ĥE2(P2) = 0
and therefore, also E2 is an isotrivial elliptic surface. At the expense of (yet
another) base extension, we may assume that also E2 = E0

2×C is a constant
fibration. Then P2 is a constant, non-torsion section on E2. We let P 0

i be
the intersection of Pi (for i = 1, 2) with the generic fiber of Ei.

Now, if either Q1 or Q2 is also a constant section, then we get a con-
tradiction since we assumed conclusion (ii) does not hold. Indeed, if for
some i = 1, 2 we have that both Pi and Qi are constant sections on the
constant elliptic surface Ei, then the existence of a point t ∈ C(Q) such that
for some k ∈ Z we have [k](Pi)t = (Qi)t implies that actually [k]Pi = Qi
on Ei. So, we may assume that Q1 and Q2 are both non-constant sections
on E1, respectively E2. Then, there is a (neither vertical, nor horizontal)
curve X ⊂ E0

1 × E0
2 containing all points ((Q1)t, (Q2)t) for t ∈ C(Q). Fur-

thermore, our hypothesis means that this curve X intersects the subgroup
Γ ⊂ E0

1 × E0
2 spanned by the points (P 0

1 , 0) and (0, P 0
2 ) in an infinite set.

The classical Mordell-Lang conjecture (proven by Faltings [Fal94]) implies
that X itself is a coset of an algebraic subgroup of E0

1 × E0
2 . Hence, be-

cause X projects dominantly onto each coordinate, there exists a nontrivial
isogeny τ : E0

1 −→ E0
2 , and also there exist endomorphisms φi of E0

i , not
both trivial, such that

(3.14) τ(φ1(Q1)) = φ2(Q2).

Then, using (for any i such that mi,1 and mi,2 are nonzero) that

[mi,1]P
0
1 = (Q1)ti and [mi,2]P

0
2 = (Q2)ti

along with the fact that τ (φ1 ((Q1)ti)) = φ2 ((Q2)ti), we obtain the conclu-
sion in Theorem 1.1 with ϕ := τ ◦ [mi,1] ◦ φ1 and ψ := [mi,2] ◦ φ2. Finally,
note that since P1 and P2 are non-torsion, then also ϕ and ψ are dominant
morphisms. Indeed, if ϕ were trivial, then using that τ is an isogeny and
that mi,1 6= 0, we would obtain that φ1 must be trivial. But then φ2(Q2) = 0
(using (3.14)), which implies that φ2 = 0 because we assumed that Q2 is
a non-torsion section. So, if ϕ were trivial (and a completely similar argu-
ment works assuming ψ were trivial), we would get that both φ1 and φ2 are
trivial, contradiction.
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This concludes the proof of Theorem 1.1. �

4. Common divisors of elliptic sequences

In this section, we apply Theorem 1.1 to prove Silverman’s conjecture [Sil04b,
Conjecture 7] concerning common divisors of elliptic sequences; actually, our
Proposition 4.3 provides a slightly more general statement than the original
conjecture. We first recall the terminology and notation from [Sil04b] that
we will use in this section.

Let k be an algebraically closed field of characteristic 0. Let C be a
smooth projective curve defined over k and let K = k(C) be the function
field of C. For any point γ ∈ C(k), we let ordγ(D) denote the coefficient of
γ in D ∈ Div(C). The greatest common divisor for any two effective divisors
D1, D2 ∈ Div(C) is defined as

GCD(D1, D2) =
∑
γ∈C

min{ordγ(D1), ordγ(D2)} · (γ) ∈ Div(C).

For an elliptic curve E defined over K, let π : E −→ C be an elliptic
surface whose generic fiber is E and let P ∈ E(K). Recall that the section
corresponding to P is denoted by σP : C → E . We denote the image of σP
by P̄ := σP (C) ⊂ E .

Let E1 and E2 be elliptic curves defined over K, let Ei/C be elliptic
surfaces with generic fibers Ei, and let Pi ∈ Ei(K) for i = 1, 2. The greatest
common divisor of P1 and P2 is given by

GCD(P1, P2) = GCD
(
σ∗P1

(OE1), σ∗P2
(OE2)

)
,

where OEi := σOi(C) is the zero section on Ei corresponding to the identity
Oi of Ei and σ∗Pi(OEi) is the pull-back under σi : C → Ei of OEi as a divisor
of Ei for i = 1, 2. Thus, for any given Qi ∈ Ei(K), GCD(P1 −Q1, P2 −Q2)
is the greatest common divisor of the two points Pi − Qi ∈ Ei for i = 1, 2.
In the following, points P1 and P2 are called (K-)dependent if there are
morphisms ϕ : E1 −→ E2 and ψ : E2 −→ E2 not both trivial such that
ϕ(P1) = ψ(P2); otherwise they are called independent. Note that if one of
P1 and P2 is a torsion point, then they are automatically dependent.

Motivated by Ailon-Rudnick’s result [AR04], Silverman conjectured that
an elliptic analogue also exists. For the convenience of the reader, we recall
his conjecture.

Conjecture 4.1 (Silverman [Sil94b, Conjecture 7]). Let K = k(C) be the
function field of a smooth projective curve C over an algebraically closed
field k of characteristic 0, let E1/K and E2/K be elliptic curves, and let
P1 ∈ E1(K) and P2 ∈ E2(K) be K-independent points.

(i) There is a constant c = c(K,E1, E2, P1, P2) so that

deg GCD([n1]P1, [n2]P2) ≤ c for all n1, n2 ≥ 1.
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(ii) Further, there is an equality

GCD([n]P1, [n]P2) = GCD(P1, P2) for infinitely many n ≥ 1.

Remark 4.2. Silverman [Sil94b, Theorem 8] showed that Conjecture 4.1 is
true provided that both E1 and E2 have constant j-invariant as a conse-
quence of Raynaud’s Theorem [Ray83].

As an application of Theorem 1.1, we prove that Conjecture 4.1 holds
(even in a slightly stronger form); we strengthen further the conclusion from
Conjecture 4.1 when k = Q.

Proposition 4.3. Let k be an algebraically closed field of characteristic 0.
Let C be a smooth projective curve defined over k, let K = k(C) and let
Ei/K, i = 1, 2, be elliptic curves defined over K. Let Pi, Qi ∈ Ei(K) for
i = 1, 2 and furthermore, assume that P1 and P2 are K-independent.

(i) If k = Q, then there exists an effective divisor D ∈ Div(C) such
that

GCD ([n1]P1 −Q1, [n2]P2 −Q2) ≤ D
for all integers ni such that [ni]Pi 6= Qi, i = 1, 2.

(ii) For an arbitrary algebraically closed field k of characteristic 0, there
exists an effective divisor D0 ∈ Div(C) such that

GCD ([n1]P1, [n2]P2) ≤ D0

for all nonzero integers ni.
(iii) The set

{n ≥ 1 : GCD ([n]P1, [n]P2) = GCD (P1, P2)}
has positive density in N.

(iv) For all but finitely many primes q, we have that GCD ([q]P1, [q]P2) =
GCD (P1, P2).

Remark 4.4. The conclusion of Proposition 4.3 (i) for an arbitrary alge-
braically closed field k of characteristic 0 would follow from our method
once the validity of DeMarco-Mavraki’s result [DM] (see Theorem 2.3) is
extended over function fields. In turn, their result is contingent on estab-
lishing the smooth variation of the canonical height in fibers of an elliptic
surface defined over a function field (over Q).

The proof of Proposition 4.3 relies on Theorem 1.1 and the following
lemma which is a variant of [Sil04b, Lemma 4] bounding ordγ(σ∗[n]P (OE))

for γ ∈ C and all integers n 6= 0.

Lemma 4.5. Let k be an algebraically closed field of characteristic 0. Let E
be an elliptic curve defined over k(C) and let E −→ C be an elliptic surface
whose generic fiber is E. Let γ ∈ C(k) and let P,Q ∈ E(k(C)) be given.
There exists a constant m = m(γ,E, P,Q) such that ordγ(σ∗[n]P (Q̄)) ≤ m

for all integers n such that [n]P 6= Q.
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Proof. Observe that ordγ(σ∗[n]P (Q̄)) ≥ 1 if and only if σ[n]P (γ) = σQ(γ).

Moreover, σQ(γ) is a torsion point of Eγ if and only if there are more than
one n such that ordγ(σ∗[n]P (Q̄)) ≥ 1.

It suffices to prove the assertion when ordγ(σ∗[n]P (Q̄)) ≥ 1 for more than

one integer n. Thus, we assume that σQ(γ) is a torsion point of Eγ . Let ` be
the order of σQ(γ) and assume that ordγ(σ∗[n]P (Q̄)) ≥ 1 for some integer n

such that [n]P 6= Q. It follows that ordγ(σ∗[n]P (Q̄)) is finite and

(4.6) σ[`n]P (γ) = [`]σ[n]P (γ) = [`]σQ(γ) = OEγ ,

which is the zero element for the elliptic curve Eγ .
If Q is the zero element of E, then it follows from [Sil04b, Lemma 4] that

the value of ordγ(σ∗[n]P (ŌE)) is bounded independently of n 6= 0 and we are

done in this case.
Assume that Q 6= O. Then (4.6) yields the inequality

ordγ(σ∗[n]P (Q̄)) ≤ ordγ(σ∗[`n]P (ŌE)).

Observe that the right-hand side of the above inequality involves only ordγ(σ∗[m]P (ŌE))

which is bounded independently of the integer m in question as remarked
above. Hence, we conclude that ordγ(σ∗[n]P (Q̄)) is bounded independently

of n 6= 0 (and n such that [n]P 6= Q). As Q 6= O, we also have that
ordγ(σ∗[n]P (Q̄)) is finite if n = 0. Thus we obtain that ordγ(σ∗[n]P (Q̄))

is bounded independently of n such that [n]P 6= Q, which concludes our
proof. �

Proof of Proposition 4.3. We first prove part (i) in Proposition 4.3. So,
for each γ ∈ C(Q), let mi,γ be an upper bound for ordγ(σ∗[n]Pi(Q̄i)) as

in Lemma 4.5. Set mγ = min{m1,γ ,m2,γ}. Since P1 and P2 are indepen-
dent, by Theorem 1.1 we may take mγ = 0 for all but finitely many points

γ ∈ C(Q); let S be the finite set of points γ ∈ C(Q) for which mγ > 0. Let

D :=
∑
γ∈S

mγ(γ).

Then, D is an effective divisor of C. Now it follows directly from Lemma 4.5
that GCD([n1]P1−Q1, [n2]P2−Q2) ≤ D for all ni such that [ni]P 6= Qi for



12 D. GHIOCA, L.-C. HSIA, AND T. J. TUCKER

both i = 1, 2. Indeed,

GCD([n1]P1 −Q1, [n2]P2 −Q2)

= GCD
(
σ∗[n1]P1−Q1

(OE1), σ∗[n2]P2−Q2
(OE2)

)
= GCD

(
σ∗[n1]P

(Q1), σ
∗
[n2]P2

(Q2)
)

=
∑

γ∈C(Q)

min
{

ordγ(σ∗[n1]P1
(Q1)), ordγ(σ∗[n2]P2

(Q2))
}

≤
∑

γ∈C(Q)

min {m1,γ ,m2,γ} · (γ)

≤
∑
γ∈S

mγ(γ).

For the proof of part (ii) in Proposition 4.3, we let Qi = Oi be the zero
element of Ei for i = 1, 2. If k = Q, then the result follows immediately
from part (i). Now, for the general case, we note that it suffices to prove
the existence of at most finitely many t ∈ C(k) such that both (P1)t and
(P2)t are torsion points on the elliptic fiber E1,t and E2,t respectively; in-
deed, the fact that the multiplicity of each such t appearing in a divisor
GCD([n1]P1, [n2]P2) is bounded follows exactly as in the proof of part (i),
using Lemma 4.5. On the other hand, if there exist infinitely many t ∈ C(k)
such that both (P1)t and (P2)t are torsion, then (according to [MZ14, The-
orem, p. 117]) P1 and P2 are related, which yields a contradiction.

The conclusion of part (iii) in Proposition 4.3 was proven by Silverman
in [Sil04b, Theorem 8 (b)] in the case both E1, E2 have constant j-invariants.
We generalize his argument as follows. For each of the finitely many γ ∈
C(k) which does not appear in the support of GCD(P1, P2), but for which
there exists some positive integer n such that γ is contained in the support
of the divisor GCD([n]P1, [n]P2), or equivalently,

(4.7) the divisor GCD([n]P1, [n]P2)− (γ) is effective,

we let nγ be the smallest such positive integer n for which (4.7) holds. Then,
it is easy to see that γ is contained in the support of GCD([n]P1, [n]P2) if
and only if nγ | n. Also, for each of these points γ which are not in the
support of GCD(P1, P2), we have that nγ > 1. This implies that for any
positive integer n which is not divisible by any of the finitely many integers
nγ , we have that

GCD([n]P1, [n]P2) = GCD(P1, P2).

The conclusion in part (iv) in Proposition 4.3 follows from the proof of
part (iii) since GCD([q]P1, [q]P2) = GCD(P1, P2) for all primes q which do
not divide any of the finitely many numbers nγ > 1. �
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