
Journal of Theoretical Biology 229 (2004) 281–288

ARTICLE IN PRESS
*Correspond

3493.

E-mail addr
1Current ad

Mexico, Albuq
2Current add

Columbia, Van

0022-5193/$ - se

doi:10.1016/j.jtb
Optimizing within-host viral fitness: infected cell lifespan and
virion production rate

Michael A. Gilchrist1, Daniel Coombs2, Alan S. Perelson*

Theoretical Biology and Biophysics Group, MS-K710, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 12 February 2004; accepted 8 April 2004
Abstract

We explore how an infected cell’s virion production rate can affect the relative fitness of a virus within a host. We perform an

invasion analysis, based on an age-structured model of viral dynamics, to derive the within-host relative viral fitness. We find that

for chronic infections, in the absence of trade-offs between viral life history stages, natural selection favors viral strains whose virion

production rate maximizes viral burst size. We then show how various life history trade-offs such as that between virion production

and immune system recognition and clearance of virally infected cells can lead to natural selection favoring production rates lower

than the one that maximizes burst size. Our findings suggest that HIV replication rates should vary between cells with different life

spans, as has been suggested by recent observation.

Published by Elsevier Ltd.
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1. Introduction

Viruses that cause chronic infections, such as HIV
and hepatitis C virus, undergo extensive evolutionary
changes during the stationary phase of infection
(Martell et al., 1992; Shankarappa et al., 1999; Gretch
et al., 1996; Pawlotsky et al., 1998). Within-host
adaptation should have implications for the progression
of the disease within an individual host as well as for the
evolution of the virus across multiple generations of
hosts. Most theoretical models addressing within-host
viral evolution (e.g. Nowak and May, 1991; Schenzle,
1994; Stilianakis et al., 1997; Regoes et al., 1998) find
that natural selection leads to ever increasing replication
rates. By taking into account the action of the immune
system, Almogy et al. (2002) showed a selective
ing author. Tel.: +1-505-667-5061; fax: +1-505-665-

ess: asp@t10.lanl.gov (A.S. Perelson).

dress: Department of Biology, University of New

uerque, NM 87141, USA.

ress: Department of Mathematics, University of British

couver, Canada, V6T 1Z2.

e front matter Published by Elsevier Ltd.

i.2004.04.015
advantage for slow reproduction in the presence of a
strong immune response.

Here, we use an age-structured model of viral
infection to identify the appropriate fitness term for
within-host viral evolution during the stationary phase
of an infection. Our results indicate that one important
component of viral fitness is burst size. Burst size is
defined as the expected number of virions produced over
the lifetime of an infected cell and is, therefore, directly
tied to an infected cell’s virion production rate and
lifespan. We focus on the question of how a virus can
maximize its burst size. We consider first the scenario
where the mortality rate of an infected cell is indepen-
dent of viral production, and then generalize to the case
where there is a direct dependence. This latter case seems
more realistic since as cells produce viral proteins they
become targets for cell-mediated immune responses, and
hence their lifespan should be shortened. We then ask
how our conclusions are affected if the production rate
also affects the ability of a virion to infect a cell or avoid
being cleared by the host. For example, increases in
protein production rates are likely to lead to increases in
transcription, translation, and/or protein folding error
rates. Such errors would likely affect virion proteins and
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hence a virus’ ability to infect cells or to avoid immune-
mediated clearance via glycosylation or other means.

1.1. Model of within-host dynamics

1.1.1. The standard model

Most models of viral infection assume that infected
cells produce virions at a constant rate. A simple
dynamic model that is commonly used (Perelson et al.,
1996; Neumann et al., 1998; Perelson and Nelson, 1999;
Nowak and May, 2000) is

dT

dt
¼ l� kVT � dT ; ð1Þ

dT�

dt
¼ kVT � dT�; ð2Þ

dV

dt
¼ pT� � cV ; ð3Þ

where T is the density of uninfected host cells susceptible
to infection, T� is the density of productively infected
host cells, and V is the density of free virions within a
host. Uninfected cells are created at constant rate l, die
at rate d per cell and are infected with rate constant k.
Productively infected cells, T�, die at a constant rate d
and produce virus at a constant rate p per cell. Free
virions, V, are cleared at a constant rate c.

Note that loss of virions by infecting a cell is not
explicitly included in this model but is assumed to be
part of virion clearance. Below, we present a general-
ization in which this loss by infection is made explicit.
Many modifications of this model are also possible. For
example, Perelson et al. (1996) allowed for the possibi-
lity of virions being produced in a burst of size N as a
cell dies by replacing p by Nd, but with N and d
constant. In another study, Klenerman et al. (1996)
considered a model in which infected cells progress
through three discrete states with variable production
and mortality rates. More recently, Nelson et al. (2004)
introduced an age-structured generalization of the
standard model which provides a more flexible and
realistic framework for modeling HIV. Such modifica-
tions create models with greater flexibility that may
better represent the underlying biology of an infection.

1.1.2. An age-structured model

Instead of considering discrete states, Nelson et al.
(2004) and others (Kirschner and Webb, 1996) have
introduced age-structured generalizations of the stan-
dard model where the infected T cell population, T�, is
structured by the age of the cell’s infection a, i.e. the
amount of time that has lapsed since the cell was
infected by an HIV virion. This approach gives greater
flexibility in modeling virion production and mortality
of an infected T cell because it allows these parameters
to change over the lifetime of an infected cell.
In its most general form, the age-structured model is
defined by the partial differential equations

dT

dt
¼ l� kV ðtÞTðtÞ � dTðtÞ; ð4Þ

@T�

@t
þ

@T�

@a
¼ �ðmðaÞ þ mÞT�ða; tÞ; ð5Þ

dV

dt
¼

Z
N

0

pðaÞT�ða; tÞ da � kV ðtÞTðtÞ � cV ðtÞ ð6Þ

with the renewal condition for Eq. (5) being

T�ð0; tÞ ¼ kV ðtÞTðtÞ: ð7Þ

Here, T�(a,t) represents the density per unit age of
infected T cells with age of infection a at time t, and p(a)
represents the virion production rate from infected cells
with an infection of age a. Further, the death rate of
infected cells is broken down into two separate terms, a
constant background mortality rate m and an infection-
dependent mortality rate m(a). If m(a) is constant, we
have an analogue of the standard model with d ¼ mþ m;
where m is the excess mortality rate due to infection.

From Eqs. (1)–(7) the steady-state densities of virions
and infected and uninfected T cells are found to be

#T ¼
c

kðN � 1Þ
; ð8Þ

#T�ð0Þ ¼ k #V #T; ð9Þ

#T�ðaÞ ¼ #T�ð0Þ exp �
Z a

0

ðmðzÞ þ mÞ dz

� �
; ð10Þ

#V ¼
1

k

l
#T
� d

� �
¼

lðN � 1Þ
c

�
d

k
; ð11Þ

where the burst size, N is defined by

N ¼
Z

N

0

exp �
Z a

0

ðmðzÞ þ mÞ dz

� �
pðaÞ da: ð12Þ

This equilibrium is locally stable provided the
infection is able to persist within a host (Nelson et al.,
2004). Persistence requires a positive equilibrium density
of virions, i.e. from Eq. (11)

k

c
ðN � 1Þ >

d

l
: ð13Þ

The right-hand side of Eq. (13) is the reciprocal of the
equilibrium density of T cells in the absence of infection.
As we show below, the left-hand side is an appropriate
measure of viral fitness within a host.

1.2. Viral fitness within a host

A commonly used measure for viral fitness within a
host is the basic reproductive ratio, R0. R0 is usually
defined as the expected number of secondary infections
caused by the introduction of a single infected cell into
an uninfected host. After a virion is produced, it may
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either infect a cell with rate kT, or be cleared at rate c.
The probability that a virion will infect a cell is therefore
equal to kT/(kT+c). If an infected cell produces N

virions and the equilibrium density of (uninfected) T
cells in an uninfected host is T0 ¼ l=d; then it follows
that R0 ¼ N=ð1 þ c=kT0Þ: We show in the appendix that
R0 is equivalent to the expected number of secondary
virions produced by a single virion introduced into an
uninfected host, and we employ this definition from
now on.

During chronic infection the number of target cells, T,
can decrease and even be limiting. We now define R(T),
a generalization of R0, to be equal to the number of
expected secondary virions produced from a single
virion when the uninfected T cell density is T and where
R0 ¼ RðT0Þ: In the appendix we show that, under the
assumption of constant uninfected T cell density, the net
reproductive ratio of a virus is

RðTÞ ¼
N

1 þ c=kT
ð14Þ

from which one can easily see that the persistence
criteria, inequality (13), is satisfied if R0 > 1:

In an infected host at equilibrium, the density of
virions is neither increasing nor decreasing and, conse-
quently, Rð #TÞ ¼ 1: However, if the density of uninfected
T cells is greater than its equilibrium density #T; R(T) will
be greater than one, and the virus will increase in
density. In contrast, if the density of uninfected T cells is
less than #T; R(T) will be less than one and the viral
density will decrease over time.

Thus R(T) can be used to calculate the absolute fitness
of a virus given the density of uninfected T cells. If a
novel viral strain, n, is created via mutation within an
infected host and the resident viral strain, r, is at its
equilibrium density, then the absolute fitness of the
novel strain is equal to R(T) evaluated at T ¼ #Tr: As a
result, the novel viral strain n can only increase in
frequency if its net reproductive ratio at the resident
equilibrium T cell density, is greater than 1.

In the appendix we show that the reproductive ratio
of the novel, potentially invading, strain, Rnð #TrÞ > 1 if
and only if ðkn=cnÞðNn � 1Þ > ðkr=crÞðNr � 1Þ; where
subscripts n and r denote properties of the novel and
resident strains, respectively. This inequality defines the
viral invasion criteria within a host and, therefore,
implies that natural selection will favor viral strains
which maximize the quantity ðk=cÞðN � 1Þ: We therefore
define a virus’s relative fitness within a host, w, as

w ¼
k

c
ðN � 1Þ: ð15Þ

The maximization of (relative) viral fitness, w, will
depend on the relationship between the terms in
Eq. (15). Assuming independence, it follows that natural
selection favors viral strains that minimize their
clearance rate, maximize their infection rate, and
maximize their burst size. However, if these terms are
not independent, then maximization of w is more
complex.

1.3. Maximizing fitness via virion production rate

We now explore how the virion production rate, p,
can evolve to maximize viral fitness. Burst size, N, is a
monotonic function of p, so here we consider
the problem of finding the production rate which
maximizes N.

1.3.1. Production-independent mortality

In the standard model, Eqs. (1)–(3), both the infected
cell mortality and the virion production rates are fixed
over the lifespan of a cell. Under these assumptions

N ¼
Z

N

0

p exp½�ðm þ mÞa� da ¼
p

m þ m
: ð16Þ

Here, virus strategies that increase p and decrease m lead
to greater burst sizes N. Assuming that there is some
physiological maximum rate of virion production, pmax,
we expect the virus to evolve to produce virions at rate
pmax and to reduce its impact on cell mortality, i.e.
reduce m. Further, Eq. (13) shows that the maximum
viral production rate, pmax, must be greater than ðm þ
mÞððd=lÞðc=kÞ þ 1Þ; otherwise the infection will be unable
to persist within the host.

1.3.2. Production-dependent mortality

There are a number of reasons to expect an infected
cell’s excess mortality rate, m, to be a function of the
virion production rate, p. For example, in the process of
replicating, a virus utilizes the resources of its host cell in
order to produce viral proteins. The loss of cell resources
and possible cytotoxic effects of viral proteins are likely
to lead to an increase in the cell’s death rate (Schneider
and Shenk, 1987; Lenardo et al., 2002; Gustin and
Sarnow, 2001). Further, assuming that the virion
production rate is positively correlated with the density
of viral peptides within the cytosol, one would expect
the number of cell surface MHC-I molecules presenting
viral peptides to increase with viral production rate,
leading to an increase in the infected cell’s death rate via
cytotoxic T cell activity. Experimental evidence supports
this hypothesis (Vijh et al., 1998).

In this scenario, with p still considered to be a
constant, Eq. (12) is revised to

N ¼
Z

N

0

p exp½�ðmðpÞ þ mÞa� da ¼
p

mðpÞ þ m
: ð17Þ

This formulation exposes a trade-off between current
and future virion production. Assuming m increases with
p, higher current virion production, i.e. higher p, reduces
the value of future virion production by reducing the
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probability that a cell will remain alive. As a result,
manipulating the host cell to produce virions at the
maximum rate, pmax, may no longer necessarily lead to
the maximization of burst size.

Differentiating N with respect to p, we find that at the
optimal production rate, p�,

m0ðp�Þ ¼
mðp�Þ þ m

p�
ð18Þ

and m00(p�)>0 (Sasaki and Iwasa, 1991; Coombs et al.,
2003). Here 0 denotes differentiation with respect to p. A
sufficient condition for a solution to Eq. (18) to exist is
that mðpÞ is increasing and m00ðpÞ > z for some constant
z > 0 (for additional details, see Coombs et al., 2003). If
p� is bigger than pmax; then p� will not be achieved and
instead the production rate should evolve to the
boundary value pmax:

If mðpÞ is concave up (and satisfies m00ðpÞ > z > 0), N is
no longer an strictly increasing function of p (Fig. 1c)
and the optimal production rate can be calculated by
finding the production rate that satisfies Eq. (18). In
cases where Eq. (18) cannot be satisfied (e.g. linear and
concave down forms of mðpÞ), N is a strictly increasing
function of p and is maximized at pmax (Figs. 1a and b).

Regardless of the form of mðpÞ; in order for the viral
infection to persist, the maximum burst size must still
satisfy inequality (13). Substituting p=ðmðpÞ þ mÞ for N in
Eq. (13), we find that the additional mortality function
due to infection, mðpÞ; must be less than pð1 þ
ðc=kÞðd=lÞÞ�1 � m at p ¼ p� in order for the virus to
persist within the host (see the gray shading in Fig. 1c).
The persistence criteria become more restrictive with
Fig. 1. Illustration of how infected cell death rate ðmðpÞ þ mÞ and burst size

between m and p. The optimal production rate p� maximizes burst size, N, w

(b), and (c) illustrate how production-dependent cell death rate, mðpÞ; and

accelerating function of p, respectively. In the decelerating and linear case, N

at pmax. In contrast, in the accelerating case then there is a finite virion produ

regions in which the persistence criteria in (13) is not met and, therefore, th
increases of the clearance rate c and less restrictive with
increases of the rate constant k.

1.3.3. Allowing dynamic production schedules

We now generalize by allowing virion production to
vary over the infection period, i.e. consider the case in
which p ¼ pðaÞ: A dynamic production schedule allows
for more realistic descriptions of the biology underlying
the infection of a cell. For example, cells do not begin
producing virions immediately upon infection, thus one
can assume that pð0Þ ¼ 0: It can be shown that if m is not
an explicit function of infected cell age, but an implicit
one, i.e. mðaÞ ¼ mðpðaÞÞ; then the optimal virion produc-
tion schedule is to produce virions at a constant rate p�,
where p� is the optimal production rate in the
p=constant case (Coombs et al., 2003). As pointed
out by Sasaki and Iwasa (1991), given a non-zero
optimal production rate, p�, and the assumption that
pð0Þ ¼ 0; natural selection will favor viruses which reach
p� the quickest. Thus even if pð0Þ is constrained to be
zero, all of our previous conclusions provide a good
approximation to the case in which virion production
can vary with time of infection, a, provided m itself is not
an explicit function of a.

1.3.4. The effect of background mortality on p�

Focusing on the case in which burst size N is
maximized at some intermediate production rate p�

(e.g. Fig. 1c), we can rewrite Eq. (18) to get an implicit
equation for p�,

p� ¼
mðp�Þ þ m

m0ðp�Þ
: ð19Þ
N change with viral production rate p for three different relationships

ithin the biologically possible range of production rates, 0 to pmax. (a),

burst size N change with p when mðpÞ is a decelerating, linear, or an

is an ever increasing function of p. Consequently, burst size is maximal

ction rate at which burst size is maximized. The shaded areas indicate

e infection will be unable to persist.
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Differentiating Eq. (19) with respect to the cell’s
background mortality rate, m, yields

dp�

dm
¼

1

m0ðp�Þ
¼

p�

mðp�Þ þ m
¼ Nðp�Þ: ð20Þ

Thus, as the background mortality rate m increases,
the best virion production rate p� increases, but at a
decreasing rate. Further, the optimal burst size N(p�)
decreases asymptotically towards zero as m increases
(Fig. 2). This behavior implies that long-lived cells
(small m) should have greater burst sizes than short-
lived cells (large m) even though the optimal virion
production rate in short-lived cells is greater.

1.3.5. Linking production to other terms

So far, we have assumed that the virion infection and
clearance rates, k and c, respectively, are constants
unaffected by the virion production rate. However, these
rates may vary with p. For example, increasing protein
translation rates has been shown to increase the
probability a protein is misfolded (Komar et al., 1999;
Cortazzo et al., 2002). Thus assuming that misfolded
proteins are not all destroyed and consequently that
some are used by the virus, misfolding can lead to
increases in c and reductions in k. If a virus has adapted
to reduce the antigenicity of its envelope proteins,
misfolded proteins could lead to greater antibody
binding to free virus, which would in turn lead to an
increase in the virion’s average clearance rate c.
Similarly, misfolded envelope proteins would be ex-
pected to have a lower target cell binding rate, thus
directly decreasing k. Finally, misfolded viral proteins
involved in post cell-invasion processes, such as reverse
transcription, should have lower enzymatic activities
and shorter intracellular half-lives (and hence concen-
trations). Thus, misfolded proteins could also indirectly
reduce the average rate of successful infection, k. The
effect of reducing the intracellular half-life of hepatitis B
virus core protein has recently been reported to have a
substantial antiviral effect (Deres et al., 2003).
Eq. (15) shows that viral fitness depends on the ratio
of k to c. If an increase in production rate leads to either
an increase in the clearance rate, a decrease in the
infection rate or both, the overall effect is a reduction in
viral fitness. Writing zðpÞ ¼ kðpÞ=cðpÞ; it follows that w ¼
zðpÞðNðpÞ � 1Þ and

dw

dp
¼ z0ðN � 1Þ þ N 0z; ð21Þ

where 0 denotes differentiation with respect to p. Eq. (21)
illustrates that maximizing burst size, N, only maximizes
viral fitness, w, if the infection–clearance ratio is
invariant as assumed in the previous section, i.e. z0 ¼
0: If the infection–clearance ratio decreases with
production rate, z will decrease with increasing produc-
tion rate, i.e. z0o0 and thus viral fitness is maximized at
a production rate below that which maximizes burst
size.

This effect is clearly illustrated when a cell’s death rate
is independent of its virion production rate, i.e. mðpÞ ¼ 0:
In this case there is no trade-off between virion
production and cell mortality so burst size is an
increasing function of p. Thus if z is independent of p,
increasing p will always lead to an increase in viral
fitness. However, if z is dependent on p then viral fitness
may be maximized at an intermediate production rate.
For example, if zðpÞp p�b; where b > 1; then the
optimal production rate is p� ¼ ðbmÞ=ðb � 1Þ: Thus
provided that pmax is sufficiently large, the optimal
production rate will be less than pmax. More generally,
the impact of production on the infection–clearance
ratio z leads to a optimal production rate less than pmax

so long as the inequality �z0ðpÞðN � 1Þ=z > N 0ðpÞ holds
at p ¼ pmax:
2. Discussion

We used a generalized model of HIV-1 infection to
show that natural selection within a host favors viruses
that maximize the relative fitness w ¼ ðk=cÞðN � 1Þ:
Consequently, in the absence of any interdependence
among the parameters in w, natural selection should
favor viral strains that maximize burst size, N, and the
rate at which they infect uninfected cells, k. Simulta-
neously, natural selection should favor viral strains that
minimize their virion clearance rate from the host, c.
Thus, for example, to the extent that antibody responses
to the virus help clear the virus or neutralize it, one
would expect natural selection to favor ‘‘escape mu-
tants’’ that minimize antibody binding, since antibody
binding can increase clearance and reduce infectivity.

In our model, the rate of T cell production, l, was
assumed to be a constant. However, other models,
which explicitly include T cell proliferation have
replaced l by a density dependent function, such as a
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logistic function (Kepler and Perelson, 1998). Including
such a proliferation term has no qualitative effect on our
overall results. This is, in part, because the definition of
viral fitness we derive is independent of how T cells are
regulated. Another plausible scenario is that l changes
with V or T� as in models that account for thymic
infection by reducing the source of new T cells (Perelson
et al., 1993). We leave the formal exploration of this
possibility for future studies. We do, however, note that
if such a scenario exists and there is an upper bound on
l then it seems likely that the system will be driven to
this maximum T cell production rate. If this happens,
then our current analysis should be applicable to this
situation.

One of the key parameters for maximizing burst size,
N, is the cell’s background mortality rate, m. In the case
of HIV-1, this rate varies between different types of cells
susceptible to infection. Based on our finding that higher
production rates are favored in cells with higher
mortality rates, we would expect low production rates
in cells with low background mortality rates, such as
resting T cells and macrophages, and high production
rates in cells with high-background mortality rates, such
as activated T cells. Measurements of intracellular viral
RNA levels in resting and activated CD4+T cells
support this prediction (Zhang et al., 1999). This
difference in intracellular viral RNA concentration
might be achieved by different strains of HIV that are
tropic for different cell types, e.g. macrophage tropic or
R5 viruses and T cell tropic or X4 viruses, having
different replication rates (Feny .o et al., 1988) or by a
single strain if it is able to adjust its replicative rate in
different cell types, although one would also expect the
availability of intracellular resources to affect viral
replication rates.

We note that our model is not particular to HIV.
If one considers hepatitis C virus (HCV) that infects
hepatocytes, which are long-lived cells with an estimated
half-life of 300 days in the normal liver (MacSween
et al., 1987), our theory predicts these cells will produce
HCV at low rates. This is consistent with the low levels
of intracellular HCV RNA (mean 20–40 copies)
observed in infected hepatocytes (Gosalvez et al.,
1998). Further, since hepatocytes are metabolically
active cells it is unlikely that all transcription is down
regulated in these cells, suggesting that HCV may be
independently regulating its replication to optimize its
fitness.

In addition to the cell’s background mortality rate,
the maximization of viral burst size, N, is also a function
of the relationship between the virion production rate p

and the infection-dependent mortality rate m. If the
infection-dependent mortality rate m is a concave up
function of the virion production rate p, then within
host viral fitness is maximized at an intermediate virion
production rate, p�. Dependence of the virion’s infection
rate constant, k, and/or its clearance rate, c, on the
virion production rate, p, can also affect the optimal
virion production rate, p�. Trade-offs between the ratio
k=c and p may lead to within host viral fitness being
maximized at intermediate production rates even in the
absence of a direct relationship between virion produc-
tion and cell mortality. This finding is conceptually
similar to the findings of Day (2001) where morbidity
effects can restrict disease evolution even in the absence
of direct mortality effects.

While it is plausible that mðpÞ is concave up, the exact
form of mðpÞ may vary between hosts and even over the
lifespan of the host. For example, the efficacy of the
immune system in attacking infected cells will vary
between hosts. Such variation can lead to variation in
the exact form of mðpÞ and consequently variation in the
optimal virion production rate between hosts. Further,
if the efficacy of the immune system changes during the
course of a long lived chronic viral infection, we would
expect the optimal virion production rate to change
as well.

The arguments presented here also support a mechan-
ism of HIV pathogenesis by which long term adaptation
of HIV-1 to an individual host could play a direct role in
the eventual breakdown of the host’s immune system.
While we have not modeled it here, because uninfected T
cells, #T; play a role as helper cells in generating immune
responses, it is likely that the production-dependent
mortality rate of an infected cell could be affected by the
density of #T: If it is the case that m is a function of both p

and #T (not just p as we have assumed) a decrease in #T

will lead to a decrease in the efficacy of the host’s
immune system which, in turn, could lead to an increase
in the optimal HIV-1 virion production rate. This is
because maximizing the fitness term w, given by Eq. (15)
is equivalent to minimizing the equilibrium density of
uninfected T cells, #T; given by Eq. (8). Consequently,
within host adaptation by HIV-1 should lead to a
decrease in #T: At first such a decrease in #T may not have
a measurable effect on the efficacy of the host’s immune
response to the infection. However, any small decrease
in immune response efficacy translates to a correspond-
ingly small increase in the optimal production rate and
consequently in burst size, N. A slight increase in N

leads in turn to another slight decrease in #T: As long as
the relationship between immune system efficacy and #T

is essentially flat, i.e. @m=@ #TE0; this feedback process
could progress quite slowly. However, if #T decreases
into a region in which efficacy changes rapidly with #T;
then we would expect this feedback process to lead to a
precipitous decline in #T and consequently the host’s
ability to fight off other infections. Gaining a better
understanding how immune response function varies
with T cell density (i.e. how m changes with #T) should
allow a more formal exploration of this hypothesis in
future studies.
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Viruses such as HIV and hepatitis C undergo
significant evolutionary change during the course of
chronic infection. However, such changes can be
neutral, deleterious or adaptive. Having the appropriate
measure of viral fitness within a host is critical to
understanding if and how a virus may adapt to its host.
Not only will within host adaptation have implications
for the progression of the disease over the lifetime of the
host, but it also is likely to have important implications
for the long term adaptation of a virus to its host
population.
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Appendix. Maximizing burst size N

We compute the net reproductive ratio, R, as a
function of life history parameters, c, k, m, p(a) and m(a),
by calculating the expected number of secondary virus
particles produced by a single virion introduced at time
t ¼ 0: Let pv(t) be the probability that a virion
introduced at time t ¼ 0 survives until time t. According
to Eq. (6), virion survival is affected by background
virion clearance and the ‘‘loss’’ of the particle through
the infection of a T cell. These effects are described by
the equation

dpv

dt
¼ �ðc þ kTÞpv: ðA:1Þ

Solving Eq. (A.1) with the initial condition pvð0Þ ¼ 1
yields

pvðtÞ ¼ exp � k

Z t

0

TðzÞ dz þ ct

� �� �
: ðA:2Þ

Each infection of a T cell is expected to produce N

additional virions. Thus the number of secondary
virions produced, which we call W ðtÞ; is given by

W ðtÞ ¼
Z t

0

pvðtÞkTðtÞN dt: ðA:3Þ

The net reproductive ratio of a virion, RðTÞ; is the
number of virions produced in the limit of t approaching
infinity, i.e.

RðTÞ ¼ t- lim
N

W ðtÞ: ðA:4Þ

If we assume that the density of uninfected T cells is
constant over the times involved in infection of a cell
and the production of a new generation of new virions,
then

RðTÞ ¼ kTN

Z
N

0

pvðtÞ dt ¼
N

1 þ c=kT
: ðA:5Þ

If the density of T cells is equal to the equilibrium
density #T; Eq. (8), then Rð #TÞ ¼ 1: At equilibrium each
virus particle is expected to lead to the production of
exactly one new virus particle.

Invasion criterion: In order for a novel viral strain n to
invade a resident strain r its fitness upon introduction
into the system must be greater than 1. Thus the
invasion criteria for a novel strain is simply

Rnð #TrÞ ¼
Nn

1 þ cn=knTr

> 1; ðA:6Þ

where the subscripts n and r refer to parameters relevant
to the novel and resident strains respectively. Using
Eq. (8) to substitute for #Tr it follows that

kn

cn

ðNn � 1Þ >
kr

cr

ðNr � 1Þ ðA:7Þ

or, equivalently, 1= #Tn > 1= #Tr: Because the invasion
criteria indicates that the viruses that have greater
values of the term ðk=cÞðN � 1Þ will be favored by
natural selection, we define the relative fitness of a virus,
w, as

w ¼
k

c
ðN � 1Þ: ðA:8Þ
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