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Vi ruses reproduce by multiplying within host cells. The reproductive fitness of a
virus is proportional to the number of offspring it can produce during the lifetime
of the cell it infects. If viral production rates are independent of cell death rate,
then one expects natural selection will favor viruses that maximize their production
rates. However, if increases in the viral production rate lead to an increase in the
cell death rate, then the viral production rate that maximizes fitness may be less
than the maximum. Here we pose the question of how fast should a virus replicate
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in order to maximize thenumber of progeny virions that it produces. We present
a general mathematical framework for studying problems of this type, which may
be adapted to many host–parasite systems, and use it to examine the optimal virus
production scheduling problem from the perspective of the virus.

c© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

Viruses are infectious intracellular parasites that reproduce using machinery of
a host cell. The viral particles produced (virions) transmit the viral genome to a
new host cell, completing the cycle of infection. Assuming equal infectivity and
survivability outside the cell, the reproductive fitness of a virus is proportional
to the total number of progeny virions it produces. In a competitive situation of
two viruses with different viral production rates but equal infectivity, survivability,
and other features, the virus with the higher production rate will take over the
population (Gilchrist et al., submitted; Almogy et al., 2002). The result that natural
selection tends to favor viruses with the greatest basic reproductive ratio parallels
that observed for other types of parasitic infections (Bremermann and Pickering,
1983; May and Anderson, 1983).

Once a virus has infected a cell, viral production may occur until the death of the
cell. Infected cell death may occur by: (i) natural (background) mortality, (ii) cyto-
pathic effects of viral replication and (iii) the host immune response to infection.
Viral cytopathic effects and the ability of the immune response to detect and kill
a virally infected cell will depend on the rate of viral replication. This leads to a
situation in which the fitness of the virus may not be increased by higher replica-
tion: reproducing at too high a rate may lead to rapid cell death, in essence sabotag-
ing potential reproduction from the infected cell in the future. If the loss of future
production is greater than the short-term gain obtained from high replication rates,
then natural selection will favor a decrease in viral production rates. Selection
within the host will thus favor viruses that maximize their fitness within the con-
straints of this trade-off between present and future production. (Details are pre-
sented inGilchrist et al., submitted.)

One might thus envision different strategies for viruses that infect cells with dif-
ferent lifetimes. If a cell lives only a short time, such as an activated T lymphocyte,
then natural selection may favor viruses that replicate as fast as possible, producing
as many offspring as possible in the limited time the cell is alive. Viral cytopathic
effects or immune responses may not appreciably shorten the lifespan of an already
short-lived cell. In contrast, if a virus infects a longer-lived cell, such as a resting
T lymphocyte or macrophage, then slow replication that does not trigger viral cyto-
pathic or effective cell-mediated immune responses may yield more progeny than a
rapid burst of replication that leads to cell death. Based on previous studies of para-
site evolution (Sasaki and Iwasa, 1991), we also anticipate that the optimal strategy
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may change over the lifespan of the infected cell; a fixed reproduction rate may be
disadvantageous. In the case of HIV, viruses have been characterized as slow/low
or rapid/high, where by slow/low one means a virus that grows slowly or generates
low numbers of progeny (Fenyö et al., 1988). Rapid/high is defined analogously.
Thus, at least in the case of HIV, different replication strategies have been observed.

Here we address the following question: given a known (and fixed) relationship
between the viral production rate, the time since infection, and the background
mortality rate of the host cell, what viral production schedule in the absence of
other constraints will optimize the total number of viral progeny? By production
schedule we mean the rate of viral replication as a function of time since infection
of a host cell. For example, one schedule is constant reproduction at a fixed rateP.
Another is one in which the reproduction rate is initially 0 and then increases in a
parameterized way to a maximum. In order to determine the optimal production
schedule, we first restate the problem in a general mathematical framework. We
then examine the effects of the cell mortality function on the optimal viral produc-
tion schedule in different cases.

This paper is motivated in part by models of HIV dynamicsin vivo in which it
has generally been assumed that HIV is produced at a constant rate from cells once
they are infected or after a brief delay (Perelsonet al., 1996; Mittler et al., 1998;
Perelson and Nelson, 1999; Nowak and May, 2001; Nelson and Perelson, 2002).
However, from the biology of virus replication it is clear that a cell cannot instantly
transition from no viral production to a constant rate of production. Thus, the
question arises as to what function best describes the rate of virion production as a
function of time since infection. In the case of HIV infection there are no measure-
ments of the virion production schedule and there are conflicting estimates of the
total number of virions produced over the lifespan of an infected cell (Haaseet al.,
1996; Hockett et al., 1999), a quantity called the burst size.

One approach to gaining insight and motivating experimental probes of this ques-
tion is to calculate the optimal virus production schedule. A similar question was
asked bySasaki and Iwasa(1991), who in a pioneering paper posed this type of
optimization problem in the context of pathogen production by an infected individ-
ual and its effect on transmission from one infected host to another.Almogy et al.
(2002) asked a related question in the context of HIV infection. They focused on
the idea that cells that produce more virus will be more visible to the immune sys-
tem, and suggested that a strong immune response produces a selective advantage
for latent viruses, whereas a deteriorating immune response provides a preferred
environment for a higher replicating viruses. Their model was a quasi-species
model in which each infected cell produced virus at a constant rate. However,
they allowed different viral species to be produced at different rates and allowed
infected cells to be killed at a rate dependent on their rate of viral production. We
also consider the possibility that the rate at which cells are killed is dependent on
their rate of viral production.
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2. MATHEMATICAL MODEL

Let P(t) be the virion production schedule, i.e., the production rate of virus
particles per cell as a function oft , time since viral infection of the host cell. The
mortality rate of the host cell,µ(P, t), is the rate at which host cells die as a
function of the viral production rate, and time since infection. We assume that cell
death is a first-order process with rateµ(P, t), so the probability of survival up to
time t is exponential. We can thus define the survivorship to timet as

σ (t) = e− ∫ t
0 µ(P(a),a)da. (1)

Although we callµ the death rate of an infected cell, in principle it includes any
mechanism that halts virion production in the host cell. Many, but not all, of
the known immune responses to viral infection involve killing the host cell. For
example, replication of some viruses can be inhibited by the presence of interfer-
ons (Flint et al., 2000; Janewayet al., 2001).

We define the total number of virions produced by a cell since the time of infec-
tion att = 0 by N(t). The total number of virions produced by a cell from the time
of infection, until cell death is called theburst size N̂ = N(∞). It is given by

N̂ [P] =
∫ ∞

0
P(t)e− ∫ t

0 µ(P(a),a)dadt. (2)

Thus, the burst size is just the integral over time of the production rate (given that
the cell is still alive) times the probability that the cell is still alive.Equation(2)
suggests that ifµ is an increasing function ofP, there will be a trade-off between
current production and future survivorship. As we shall show, whether this trade-
off exists depends on the exact functional form ofµ(P(t), t).

We examine the consequences of the hypothesis that natural selection within a
host will favor the maximization of burst size. If such calculations give results
in agreement with observation, it would provide some support for the optimiza-
tion hypothesis and provide a possible explanation for the observation that resting
CD4+ T cells have many fewer HIV RNA copies per cell than activated CD4+
T cells (Zhanget al., 1999), consistent with different virion production rates in
cells with different lifespans.

Therefore, our goal is to find theoptimal virion production schedule, P∗(t),
which maximizes the burst size given a particular mortality functionµ(P, t).
Biologically, we must haveP∗ ≤ Pmax, wherePmax is the maximum rate at which
the host cell can produce virions. We will make the minor simplification thatPmax

is constant over time, which need not be the case in the real system.
In constructingµ, we need an idea of how it will depend onP(t) andt indepen-

dently. The explicit time dependence of the function should include the background
(uninfected cell) mortality function, as well as mortality effects of infection that are
independent of the viral reproduction rate. For example, viruses such as HIV-1 that
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integrate their genome into the host cell DNA can be transcriptionally active and
yet not produce virions (Furtadoet al., 1999). If viral proteins are produced and
presented on MHC class I molecules on the cell surface, cell-mediated immune
responses should lead to cell death.

The dependence ofµ on P(t) will include the direct harmful effect that viral
production will have on the host cell, due to utilization of cellular resources, e.g.,
depletion of nucleotide pools, cytotoxic effects of viral proteins, and the increased
likelihood of a cell-mediated immune response when viral peptides are degraded
and presented on the cell surface. These effects should be increasingly severe as
viral production increases, and therefore we shall often think of theP-dependent
parts ofµ as increasing, concave-up functions. Further discussion of the form of
µ, in aslightly different context, is found inAlmogy et al. (2002).

If the background cell mortality rate depends on time explicitly then we should
consider the age of the host cell at infection. The optimal viral production schedule
would, in general, depend on that age, and the question would arise as to whether
a virus would be able to determine the approximate age of its host cell. We shall
assume that any time-dependent effects in the mortality function will begin at infec-
tion and therefore these issues are not examined here.

In the preceding discussion we have defined mortalityµ to be a function of the
productionrate and time. A valid alternative model would be to considerµ as also
a function of the intracellular viralload of the cell. Supposing that virions build up
within the cell over time, this is equivalent to taking the cellular death rate to be a
function of production to date. Doing this does not introduce any new difficulties.
It is obvious that forP(t) > 0, N ′(t) > 0. Mathematically, we can thus measure
time by intracellular viral load. Biologically, we can interpret this as an increase in
the effective age of the cell due to viral load. This reduction means thatµ can be
considered a function ofP(N) andN .

We begin by looking at the case in which infection has no effect on the death
rate, and then build complexity by examining time dependence of the production
rate, non-linear responses to production, full time dependence ofµ and finally
dependence on the viral load.

2.1. Cell death rate independent of viral replication. Suppose that the host cell
is essentially unaffected by the infection, so thatµ(P, t) = m(t) > 0, wherem(t)
is the background mortality rate, i.e., the death rate of an uninfected cell. In this
case,

N̂ [P] =
∫ ∞

0
P(t)e− ∫ t

0 m(a)dadt. (3)

Becauseµ is not a function ofP, there is no trade-off between present and future
production. The virus should attempt to reproduce as quickly as possible;P∗(t) =
Pmax maximizesN̂ . This response is entirely independent of the age of the cell at
infection.
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2.2. Cell death rate linearly related to virus production. Suppose that viral
replication leads to a simple linear mortality relationshipµ(P, t) = λP(t). The
integral (2) can be performed explicitly, to find

N̂ [P] = 1

λ
(1 − e−λ

∫∞
0 P(a)da). (4)

The maximum valueN̂ [P] = 1/λ is achieved for a general set of functionsP(t)
that have an unbounded integral on(0,∞). In asense, all strategies the virus can
take to maximize burst size are equivalent: reproduction now leads to an equivalent
decrease in reproductive ability later.

A more realistic mortality function might beµ(P, t) = m + λP(t), whereλ

is a constant andm represents a fixed background mortality rate. Becausem is
constant over time, the viral strategy will be independent of the age of the host
cell at infection. In this case, the burst size integral is weighted by an exponential
decrease over time

N̂ [P] =
∫ ∞

0
P(t)e−λ

∫ t
0 P(a)dae−mt dt. (5)

If we constrainP(t) to be constant, thend N̂/d P = m/(λP +m)2 > 0. Therefore,
the exponential weighting and the fact that future production is still discounted by
current production together mean that it is best for the virus to reproduce as quickly
as possible. The optimal fixed strategy is thus to reproduce at the maximum level
for all time, P∗(t) = Pmax, and theoptimal burst size turns out to bêN [P∗] =
Pmax/(m + λPmax). For the case whereP(t) is a function of time, we integrate (5)
by parts to get

N̂ [P] = 1

λ

(
1 − m

∫ ∞

0
e−mtσ (t)dt

)
. (6)

To maximize this, we must minimize the integral term. This is done by minimizing
the survivorship functionσ (t), which is done by settingP = Pmax for all time. In
this case, therefore, the optimal dynamic production schedule is constant.

2.3. Non-linear relationship between cell death and viral production. We now
allow µ to be a general function ofP but one that does not depend on time
except throughP(t). In particular, we have in mind thatµ(P, t) = µ(P) will
be an increasing, concave up function ofP, corresponding to an increasing rate
of damage or toxicity to the cell as a function of viral production. A simple
example isµ(P, t) = (λ/2)(P/Pmax)

2 + m, wherem is a constant (examined
in detail below). We present two approaches to finding the optimal production
rateP∗(t).
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the origin
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Figure 1. Graphical solution ofequation(9). Solving (9) is equivalent to finding the value
of P where the tangent line toµ(P) passes through the origin. As shown above, atP∗,
µ(P∗) = µ′(P∗)P∗.

2.3.1. Fixed production rate. First, suppose thatP(t) is constant. The burst
size is then given by

N̂ [P] =
∫ ∞

0
Pe− ∫ t

0 µ(P)dadt = P
∫ ∞

0
e−µ(P)t dt = P

µ(P)
. (7)

Theoptimal production rate,P∗, mustsatisfy

d N̂

d P

∣∣∣∣∣
P=P∗

= 0 and
d2N̂

d P2

∣∣∣∣∣
P=P∗

< 0, (8)

which in turn imply

P∗ = µ(P∗)
µ′(P∗)

and µ′′(P∗) > 0, (9)

whereµ′(P) = dµ/d P. In addition, for P∗ > 0, we requireµ′(P∗) > 0.
Equation(9) was first derived bySasaki and Iwasa(1991) in a different context.
The graphical solution of these equations forP∗ is illustrated inFig. 1. The exis-
tence of a solution, however, is not guaranteed byµ′′(P) > 0. To see this, consider
the functionµ(P) = P + (1 + P)−1 which is strictly concave up but yields no
positive solution of (9). (Practically, in this case, the optimal production level will
be P = Pmax.)

The conditions (8) apply only at the optimal production rate.µ(P) need not be
concave up or even monotonically increasing over the interval 0≤ P ≤ Pmax for
an optimal production rate to exist. A simple way to find the optimal production
rate is as follows (seeFig. 1). Assume thatµ(P) ≥ 0 andµ(0) > 0. Lay a
ruler on theP-axis. Rotate the ruler counterclockwise about the origin until it first
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intersects the graph ofµ(P) between 0 andPmax. The coordinates of the point of
intersection,(P∗, µ(P∗)) satisfy P∗ = µ(P∗)/µ′(P∗) unlessP∗ = Pmax. Also, if
P∗ �= Pmax then it is easy to see thatµ′′(P∗) > 0. If µ is concave down or linear,
then P∗ = Pmax. A proof that the production rate found in this way is optimal is
given below inProposition 1.

2.3.2. Dynamic production. The dynamics of the probability that an infected
cell is still alive at timet , I (t), and the total number of virions produced so far,
N(t), are described by the first-order equations

d I

dt
= −µ(P(t))I (t) (10)

and
d N

dt
= P(t)I (t). (11)

Notethat I (0) = 1. Dividing (10) by (11), we have that

d I

d N
= −µ(P(N))

P(N)
(12)

so

I (N) = 1 −
∫ N

0

µ(P(N ′))
P(N ′)

d N ′. (13)

Here we have writtenP as a function ofN rather thant . This is legitimate provided
P > 0 and soN ′(t) > 0. The burst sizêN is reached whenI = 0, so

∫ N̂

0

µ(P(N))

P(N)
d N = 1. (14)

To maximize N̂ , we must minimize the integrand for each value ofN by choosing
P(N). Thus, it is sufficient to differentiateµ(P)/P with respect toP and set to
zero. We then find after rearranging

Pµ′(P) − µ(P) = 0, (15)

found previously asequation(9). This result is independent of howP depends
on N .

An alternative way of looking at the problem is to take the functional derivative
of N̂ [P] (details of this calculation are given in the Appendix), yielding

δ N̂

δP
= P − µ(P)

µ′(P)
+ d

dt

(
1

µ′(P)

)
. (16)
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At extrema, the functional derivative is zero. Rearranging (16) under this condition
gives a first-order differential equation to describe the evolution of extremalP(t)
through time,

d P

dt
= µ′(P)2

µ′′(P)

(
P − µ(P)

µ′(P)

)
. (17)

We immediately see that the solution of (15) is a fixed point of this differential
equation.

EXAMPLE 1. As an illustration, consider the caseµ(P) = (λ/2)(P/Pmax)
2 + m.

From equation(15), the optimal (fixed) production rateP∗ is defined byP∗ =
µ(P∗)/µ′(P∗) = ((λ/2)(P∗/Pmax)

2) + m)/(λP∗/P2
max), so P∗ = Pmax

√
2m/λ,

with burst sizeN̂ = P∗/µ(P∗) = Pmax/
√

2mλ. As m → 0, P∗ = Pmax
√

2m/λ

→ 0 and the burst sizeN̂ [P∗] = Pmax/
√

2mλ → ∞, suggesting that for very long-
lived cells with this mortality function the best viral strategy is slow production.
This is consistent with the observation of hepatitis C virus, which infects long-
lived hepatocytes, being produced slowly [cf.Boisvert et al. (2001)], as well as the
observation of macrophage tropic viruses being slow/low (Fenyö et al., 1988).

We now give an interesting alternative proof due to an anonymous referee of the
fact that the best schedule is constant.

PROPOSITION 1. For a mortality rate containing no explicit dependence on time
that is a strictly positive function, µ(P) > 0, the optimal production rate P∗(t)
satisfying 0 < P∗(t) < Pmax is static, i.e., time independent.

Proof. We prove this proposition by finding a static production rate using the
‘rotating ruler’ argument described above, and then showing that it is optimal.

Define theset A by

A = {a ≥ 0 | µ(P) ≥ a P,∀P : 0 ≤ P ≤ Pmax}. (18)

This is the set of all slopesa ≥ 0 such that the liney = a P lies below the
graph of y = µ(P) for 0 ≤ P ≤ Pmax. Defineα = sup A to be the slope
of the steepest possible straight line through the origin lying below the graph of
µ. The functionsµ we are concerned with have background mortality, meaning
µ(P) > 0, soα exists and is positive. Moreover, there exists 0< P∗ ≤ Pmax such
thatαP∗ = µ(P∗) andµ(P) ≥ αP for all 0 ≤ P ≤ Pmax.

Wecompare this static strategy with an arbitrary strategyP(t):

N̂ [P] =
∫ ∞

0
P(t)e− ∫ t

0 µ(P(s))dsdt ≤
∫ ∞

0
P(t)e− ∫ t

0 αP(s)dsdt = 1/α. (19)

N̂ [P∗] =
∫ ∞

0
P∗e− ∫ t

0 αP∗dsdt = 1/α. (20)

Therefore the constant production rateP∗ is optimal. This argument holds even
whenP = Pmax (for example, whenµ is a concave down function).�
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2.4. Explicit time dependence of the mortality rate with fixed production rate.
We now generalizeµ by allowing it to depend on time explicitly, and focus on the
case whereP does not change over time:µ(P, t) = f (P) + m(t). The burst size
is now given by

N̂ [P] =
∫ ∞

0
Pe− ∫ t

0 m(a)dae− f (P)tdt (21)

= P
∫ ∞

0
σ1(t)e

− f (P)tdt (22)

whereσ1 is the survivorship function for uninfected cells or thenatural survivor-
ship, i.e.,

σ1(t) = e− ∫ t
0 m(a)da. (23)

Let the Laplacetransform of the natural survivorshipσ1(t) be S1, i.e.,

S1( f (P)) =
∫ ∞

0
σ1(t)e

− f (P)t dt, (24)

so that

N̂ [P] = P S1( f (P)). (25)

To find the optimal production rate, we differentiate (25) with respect toP and set
the result to zero:

0 = S1( f (P)) + S′
1( f (P))P f ′(P). (26)

This equation (with the condition̂N ′′[P] < 0), which in general must be solved
numerically, defines the optimal static value ofP. We demonstrate with an
example.

EXAMPLE 2. Let µ(P, t) = (λ/2)(P/Pmax)
2 + δt + m. Rescaling production

p = (P/Pmax) and timeτ = λt , consider maximizing the rescaled burst size
N̂/(λPmax). Setting ε = δ/λ2 and φ = m/λ, we have the rescaled mortality
µ̂(p, τ ) = (1/2)p2 + ετ + φ. This gives

σ1(τ ) = e−(ε/2)τ2−φτ (27)

and

S1(x) = e(φ+x)2/(2ε)

√
π

2ε
erfc

(
φ + x√

2ε

)
. (28)

The solution to (26) in this case can be found graphically for particular values
of ε andφ. Figure 2shows plots of (dimensionless) burst size as a function of
p for varying ε, with φ = 0.1. If background mortality is independent of time
since infection,ε = 0. Figure 2clearly shows that in such a situation the virion
production rate should be significantly less thanPmax.
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(λ/Pmax) N[p]

p

ε=0

ε=0.01

ε=0.05
ε=0.1

ε=0.2

1

3.5

Figure 2. (Example 2) Using the dimensionless mortality function̂µ(p, τ ) = 1
2 p2 +

εt + φ for static p, dimensionless burst size is plotted againstp, whenφ = 0.1 and
ε = 0, 0.01, 0.05, 0.1, 0.2. In each case, the maximum burst size occurs at the solution
of (26).

It is now natural to ask whether in a situation with time-varying mortality a time-
varying production schedule can be superior to the time-independent case shown
here. InAppendix B, we show that, at least in some simple (but biologically
natural) cases, time-varying productionis advantageous.

2.5. Cell death rate dependent on cellular viral load. Wenow consider the case
where the cell mortality depends onP(t) andN(t). Wecan choose to measure the
effective age of the cell in physiological terms, as measured by the level of virus
within the cell: if N(t) is strictly increasing, we may writet as a function ofN ,
and thusP as function ofN .

Suppose first thatµ(P, N) = µ(N), a strictly positive function of onlyN .
We must choose the production functionP(N) so that the burst sizêN is maxi-
mized. The argument given inequations(10)–(14) applies here, so we again have
the equality ofequation(15),

∫ N̂

0

µ(N)

P(N)
d N = 1. (29)

In order that the upper limit of integration,̂N , is maximized in this equality, the
integrand must be minimized. To this end,P(N) must be madeas big as possible.
Therefore, the optimal production schedule in this case is a constant,P = Pmax (as
in Section 2.1).

If we now allowµ to be a positive function ofP as well asN , with ∂µ/∂ P > 0
and∂2µ/∂ P2 > a > 0, then the integrand in (29) becomes infinite asP → 0 and
as P → ∞. An optimal value ofP on the interval 0< P < Pmax may therefore
exist.
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3. CONCLUSIONS

In order for viruses to propagate themselves, they must infect cells, and use
the existing cellular machinery to produce new progeny virions. The number of
progeny virions produced is thus influenced by a number of factors: the host cell
resources available, the immune response that may kill an infected cell and limit
its viral production, and factors intrinsic to the virus that control how rapidly it
replicates. While natural selection within a host generally favors viruses which
maximize thenumber of progeny produced over the lifespan of the infected cell,
i.e. burst size (Gilchrist et al., submitted) if viral production and cell survivor-
ship are linked then replicating at the maximal rate may not be the optimal strat-
egy for a virus. To determine the best reproductive strategy we formulated an
optimization problem, in which the objective function to be maximized was the
total number of progeny produced over the life of the infected cell, and the vari-
able assumed to be under viral control was the rate of viral production as a func-
tion of time since infection. We then showed that the optimal viral production
schedule depends on the mortality rate of the host cell. Since many viruses are
cytopathic, i.e., they kill their host cell, we have allowed the infected cell death
rate to be a function both of the time since cell infection, number of progeny
virions produced and of the viral production rate. We showed that if the cell
death rate was an increasing function of the viral production rate (independent
of time) with second derivative bounded away from zero then there would be an
optimal production rate that was lower then the maximum viral production rate
possible. Further, we showed that even if the production rate was allowed to vary
with time during infection, the optimal production schedule was to produce viruses
at a constant rate.

We then examined the situation where the cell mortality rate explicitly increa-
ses over time. Grossmanet al. (1999) suggested this possibility in HIV infec-
tion, although we know of no data that supports this hypothesis. Nevertheless,
we find an interesting result. When mortality increases with time of infection, the
optimal viral production rate is not constant, but increases gradually over time.
This behavior reflects the decreasing value to the virus of future survival of the
cell.

Finally, we considered the case where cell mortality is time-independent but
depends on the amount of viral production to date. Biologically, this might
correspond to the situation where viral proteins build up inside the cell and are
responsible for its death. In this case, we found that the optimal strategy is for the
virus to reproduce as quickly as possible. However, if the mortality also depends
on the virion production rate, the optimal production rate may be lower than the
maximum.

Our model was necessarily a simplification, but many refinements and further
developments to add biological realism fit naturally into our time-structured frame-
work. For example, our model placed no constraint on how rapidly viral production
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could change. It is clear that cells cannot produce virus at a constant rate from the
instant they are infected. Once a virion enters a cell there are many biological steps
that must occur before new progeny virions can be produced. In the case of HIV,
the virus has to enter the cell, the proteins that surround the viral RNA need to
dissociate from the RNA (a process called uncoating), the RNA has to be reverse
transcribed into DNA and the DNA needs to be transported into the nucleus and
then integrated into the host cell’s DNA. After that, the viral DNA needs to be tran-
scribed into RNA, with some RNAs being multiply spliced and acting as messen-
ger RNAs encoding viral proteins. In addition, full length transcripts are also made
and are packaged into newly forming viral particles, that then bud from the infected
cell surface. Thus, initially the virus production rate has to be zero. This has been
modeled previously by introducing a delay from the time of infection until viral
production (Mittler et al., 1998; Nelsonet al., 2000; Nelson and Perelson, 2002).
Herethe optimization calculation may need to be extended in a similar way. In
the absence of this extension, we hypothesize that the optimal strategy is one
where production starts at zero and then ramps up to the computed fixed opti-
mal rateP∗ as rapidly as the biological constraints allow. Such constraints could
be incorporated explicitly using a mechanistic model of the within-cell infection
process.

If the mortality rate of an uninfected cell is not constant, the optimal schedule for
production will vary according to the age of the cell at infection. We assume that
the virus has no knowledge of this age (if it could, our previous arguments would
hold, but this degree of sophistication seems unlikely). The optimization of the
production schedule must therefore be considered over the probability distribution
of host cell ages,a, at thetime of infection. Specifically, the mean burst size is
given by

Na[P(t)] =
∫ ∞

0
σ (a)

∫ ∞

a
P(t)σ (t)dtda (30)

whereσ (t) is the probability of survivorship to timet [equation(1)] and the lower
limit of the inner integral isa, since there is no production before infection.P(t)
must now be chosen to optimizeNa , which is a lengthier task than that considered
in this paper.

Although we have focused on viral infection in this paper and were motivated
by modeling HIV infection, the general framework extends to any host–parasite
system where the parasite must choose a reproduction rate as a function of time.
The concept of background mortality rate which we have used in our description
of cells may need to be replaced by more a complex function to describe death of
a higher organism. In particular, explicit time- and age-dependence (for example
due to seasonal changes or life stage of the host) may need to be considered. How-
ever, more complex parasites than viruses will presumably have more flexibility in
optimizing their behavior given this kind of complexity inµ.
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APPENDIX A: OPTIMIZATION OF THE BURST SIZE

We wish to find theoptimal functionP(t) that maximizes

N̂ [P] =
∫ ∞

0
P(T )e− ∫ T

0 µ(P(τ ),τ )dτdT . (A.1)

We do this by finding δ N̂/δP, the functional derivative ofN̂ [P] with respect
to P(t). Letting P(t) → P(t) + δP(t), with a corresponding change in burst
size,N̂ → N̂ + δ N̂ , we find after a little work that the derivative at timet is given
by

δ N̂

δP(t)
= e− ∫ t

0 µ(P(τ ),τ )dτ − µ′(P(t), t)
∫ ∞

t
P(T )e− ∫ T

0 µ(P(τ ),τ )dτdT (A.2)

= σ (t)

(
1 − µ′(P(t), t)

∫ ∞

t
P(T )e− ∫ T

t µ(P(τ ),τ )dτdT

)
, (A.3)

where we have written the survivorship [equation(1)] up to timet asσ (t), and we
defineµ′ = ∂µ/∂ P. This is an integral equation forP(t), and iseasily interpreted
as follows. First, note thatσ (t) > 0 for all t , so the sign of the derivative is
controlled by the parenthetical terms. The first of these comes from differentiating
P(t) with respect to itself, and represents the direct increase inN̂ due a change
in P. The second term represents the loss of future contributions toN̂ due to
increase inP at the present time.

We also note that because the parenthetical terms are dependent only on future
time points (we are integrating fromt onwards), the optimal strategy is indepen-
dent of any earlier production. This type of behavior is predicted for dynamic
optimization problems by Bellman’s principle of optimality (Bellman, 1957).

Continuing, if P(t) is part of the optimal production schedule thenδN/δP(t)
= 0, which implies that

∫ ∞

t
P(T )exp

[
−
∫ T

t
µ(P(τ ), τ )dτ

]
dT = 1

µ′(P(t), t)
. (A.4)

If we now differentiateequation(A.3) with respect tot and useequation(A.4)
whenδ N̂/δP = 0 we get the following ordinary differential equation:
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d P

dt
= 1

µ′′(P(t), t)

(
µ′(P(t), t)2

(
P(t) − µ(P(t), t)

µ′(P(t), t

)
− ∂2µ

∂ P∂t

)
(A.5)

whereµ′′(P(t), t) = ∂2µ/∂ P2. We have not defined any initial or boundary
conditions forP(t). Therefore, equation(A.5) defines aone-parameter family of
potential optimal solutions, depending on the value of the initial conditionP(0).
The natural boundary conditions are best written in terms of the survivorship:
σ (0) = 1 andσ (∞) = 0. In fact, we can restate the whole problem in terms
of σ , as follows. Assumingµ(P(t), t) is strictly an increasing function ofP for
all t , we introduce the time-dependent inverseM ≡ µ−1 as follows:

− d

dt
ln(σ (t)) = µ(P(t), t) (A.6)

M

(
−σ ′(T )

σ (T )

)
≡ µ−1

(
−σ ′(t)

σ (t)

)
= P(t). (A.7)

Now N̂ is defined in terms ofσ :

N [σ ] −
∫ L

0
M

(
−σ ′(T )

σ (T )

)
σ (T )dT, (A.8)

and finding the functional derivative is relatively simple:

δ N̂

δσ
= M

(−σ ′

σ

)
− σ ′

σ
M ′
(−σ ′

σ

)
+ d

dt

{
M ′
(−σ ′

σ

)}
. (A.9)

Setting δ N̂/δσ = 0 and using the identities (A.6) and (A.7), equation(A.9)
becomes

d P

dt
= 1

µ′′(P(t), t)

(
µ′(P(t), t)2

(
P(t) − µ(P(t), t)

µ′(P(t), t)

)
− ∂2µ

∂ P∂t

)
(A.10)

as above (A.5). The boundary condition arising from integrating by parts is

[
δσ

µ′(P(t))

]∞

0

= 0. (A.11)

Imposingδσ (0) = δσ (∞) = 0 is consistent with the boundary conditions descri-
bed above, and satisfies this condition. Along with the conditions,equation(A.9)
could in principle be used to determine the optimalσ (t) and thus the optimalP(t).
But practically speaking, it is generally simpler to consider all possible trajectories
of (A.5) and choose the best one.
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The next step is to identify the criteria for solutions ofequation(A.5) which
maximizeN̂ . In order for equation(A.5) to describe the optimal virus production
schedule [i.e. the functionP(t) which maximizes N̂ ], δ2N̂

δP(t)δP(t ′) must benegative
for all t . To examine this, we look at the second functional derivative, and find

δ2N̂

δP(t)δP(t ′)
= −δ(t − t ′)σ (t)µ′′(P(t), t)

∫ ∞

t
P(T )e− ∫ T

t µ(P(τ ),τ )dτdT . (A.12)

Evaluating this equation atδ N̂/δP = 0, and usingequation(A.4)

δ2N̂

δP(t)δP(t ′)
= −σ (t)

µ′′(P(t), t)

µ′(P(t), t)
δ(t − t ′). (A.13)

As discussed earlier,σ (t) > 0, and because we have also assumed thatµ(P(t), t)
is a strictly increasing function ofP, by definition µ′(P(t), t) > 0. Therefore, the
optimality criterion simply reduces to

µ′′(P(t), t) > 0. (A.14)

Equation(A.14) implies that any solution toequation(A.5) which maximizes N̂
will always lie within the realm in whichµ is an accelerating function ofP. Con-
versely, a production schedule which minimizesN̂ is one which always lies within
the realm in whichµ is a decelerating function ofP.

APPENDIX B: EXPLICIT TIME DEPENDENCE OF THE MORTALITY RATE

AND VIRAL PRODUCTION SCHEDULE

Here we examine the general case where bothP andµ are functions oft . We
will take µ as an increasing, concave up function ofP, and further assume that
∂µ/∂t > 0. Fromequation(A.5), extremalP(t) evolve in time according to

d P

dt
= 1

µ′′(P(t), t)

(
µ′(P(t), t)2

(
P(t) − µ(P(t), t)

µ′(P(t), t)

)
− ∂2µ

∂ P∂t

)
, (B.1)

(where ′ indicates differentiation with respect toP) which can now be non
autonomous. Although it is possible thatµ(P, t) depends on interactions of viral
production and time, we shall only examine a particular class of functions where
the time- and production-dependent parts contribute separately: letµ(P(t), t) =
f (P) + m(t). Then the burst size is given by

N̂ [P] =
∫ ∞

0
σ1(t)P(t)e− ∫ t

0 f (P(a))dadt. (B.2)
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Thedynamical equation for extremalP (B.1) becomes

d P

dt
= f ′(P)2

f ′′(P)

(
P − f (P) + m(t)

f ′(P)

)
. (B.3)

We now investigate a special case of this where an explicit solution can be found:
let µ(P(t), t) = (λ/2)(P/Pmax)

2 + m(t). We believe the behavior of this example
to be generic for solutions of (B.3) with concave-upf (P) and increasingm(t).

Rescaling as inExample 2(p = P/Pmax, τ = λt, φ(τ) = m(τ )/λ), the dynam-
ical equation becomes

dp

dτ
= p

(
p2

2
− φ(τ)

)
. (B.4)

This can be integrated with initial conditionp(0) to get

p(τ ) = e− ∫ T
0 φ(a)da

(
1

p(0)2
−
∫ τ

0
e−2

∫ T
0 φ(a)dadT

)−1/2

. (B.5)

Finite time blow-up ofp(τ ) occurs if p(0) > p f where

p f =
(∫ ∞

0
e−2

∫ T
0 φ(a)dadT

)−1/2

. (B.6)

Define
(τ) as the solution of(p2/2) − φ(τ) = 0, i.e.,
(τ) = √
2φ(τ). We now

examine four cases:

CASE 1. p(0) ≤ 
(0).

Fromequation(B.4), and the fact thatφ(τ) is increasing, it is clear thatdp/dτ < 0
for all τ . p(τ ) will be a monotonically decreasing function, asymptoting to 0 as
τ → ∞.

CASE 2. 
(0) < p(0) < p f .

Note that
(0) < p f follows from the monotonicity ofφ. It is clear from (B.4)
that if p(0) > 
(0) then dp/dτ |τ=0 > 0. Therefore, in this casep(τ ) always
increases at first. We now show that there will be a time after whichp(τ ) is strictly
decreasing. First, we define

b(τ ) = (1/p(0)2) −
∫ τ

0
exp

(
−2

∫ T

0
φ(a)da

)
dT . (B.7)

Usingequation(B.5),

p2

2
=
(

1

2
e−2

∫ τ
0 φ(a)da

)/(
1

p(0)2
−
∫ τ

0
e−2

∫ T
0 φ(a)dadT

)
(B.8)

= −b′(τ )

b(τ )
. (B.9)
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−b′(τ ) → 0 asτ → ∞, becauseφ(τ) is an increasing function. In this case,
b(τ ) is bounded below asτ → ∞. Therefore, for largeτ , (p2/2) < φ(τ) and so
dp/dτ < 0 [by equation(B.4)]. Hence, limτ→∞ p(τ ) → 0. This case is interesting
in that p(0) exceeds the static optimum, butφ(τ) increases sufficiently rapidly that
it ‘overtakes’(1/2)p2, blow-updoes not occur, andp(τ ) ends up falling to 0.

CASE 3. p f < p(0).

In this case,p(τ ) blows up in finite time.

CASE 4. p(0) = p f .

This case is the most interesting. Here, there is no finite time blow up of the
solution, butdp/dτ remains positive for all time. We also see that, at long times,
p(τ ) � 
(τ), for as φ(τ) gets very large, the term(1/2)p2 − φ(τ) from
equation(B.4) must remain under control. Further, we speculate that this solution
is optimal:

CONJECTURE 2. Let µ(p(τ ), τ ) = (1/2)p2 + φ(τ), with φ′(τ ) > 0. Then the
optimal production rate p∗(τ ) is given by (B.5) with initial condition p(0) = p f

defined by (B.6). Also, limτ→∞(p∗(τ ) − √
2φ(τ)) = 0.

We believe that this can be generalized as follows.

CONJECTURE 3. Let µ(P, t) = f (P) + m(t) with f ′(P) > 0, f ′′(P) > a > 0
for some a and m ′(t) > 0. Then there exists a set of initial conditions P f <

P(0) < ∞ for which the solutions of (B.1) undergo finite time blow up. The
optimal solution P∗(t) has initial condition P f , and satisfies

lim t→∞ P∗(t) − µ(P∗, t)

µ′(P∗, t)
= 0. (B.10)

The preceding ideas are illustrated using the simplest possible system of this type
in the following example.

EXAMPLE 3. Letµ(P(t), t) = (λ/2)(P(t)/Pmax)
2 + δt + m. Rescaling as before

(Example 2), µ̂(p, τ ) = (1/2)p2 + ετ + φ and the general solution from
equation(B.5), for extremalp is

p(τ ) = e−τ (ετ+2φ)/2

(
1

p(0)2
− eφ2/ε

ε

(∫ φ+ετ

φ

e−a2/εda

))−1/2

(B.11)

which can also be written in terms of the error function. This solution approaches
that ofExample 2for small τ asε → 0. The condition for finite time blow up is
[from (B.6)]

p(0) > p f =
(

eφ2/ε

2

√
π

ε
erfc

(
φ√
ε

))−1/2

. (B.12)
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Figure B.1. (Example 3) Solutions ofequation(B.5) for different p(0), givenµ̂(p(τ), τ )

= (1/2)p2 + ετ + φ and usingε = 0.01 andφ = 0.1. Three regimes are visible: (i) finite
time blow-up, for p(0) greater than the solution of (B.12), which is� 0.5137 for these
parameters; (ii) increasing and decreasing solutions for 0.5137 > p(0) >

√
2φ � 0.44;

(iii) monotonically decreasing solutions forp(0) <
√

2φ. Theoptimal solutionp∗ satisfies
p∗(0) � 0.5137.

1

2.5

ε=0

ε=0.01

ε=0.05
ε=0.1

ε=0.2

(λ/Pmax) N[p(t)]

p(0)

Figure B.2. (Example 3) Burst size as a function of initial condition, determined numeri-
cally using φ = 0.1 andε = 0, 0.01, 0.05, 0.1, 0.2, for µ̂(p(τ), τ ) = (1/2)p2 + ετ + φ.
The optimal burst size forε = 0.01 is found atp(0) � 0.5137, just before the onset of
finite time blow-up.

Figure B.1 shows a family of extremalp(τ ) for this problem with different initial
conditions. The burst size can’t be explicitly integrated in this case, so we present a
numerically determined plot of(λ/Pmax)N̂ [p] againstp(0) (Fig. B.2). The optimal
initial condition is that corresponding to equality inequation(B.12), in agreement
with the first conjecture above. In the caseε = 0.01, this turns out to bep �
0.5137. We can compare this to the static strategy found inExample 2, which for
ε = 0.01 wasp � 0.563. The optimal static schedule is higher than the dynamic
optimum at first, because it cannot increase later when survivorship diminishes.
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