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This talk will be found at

http://www.math.ubc.ca/˜cass/sydney/talk2.pdf
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Let be the group of real points on a reductive
group defined over , � a group of finite index in

��� � . The spectrum of ��� � � � � is of great number-
theoretical interest.

In this talk I’ll try to give some idea of some of the
difficulties involved in the subject, by explaining
something of what happens for 	
 � . This talk will
be largely a talk in analysis, since it is the analysis
involved that most people find intimidating. I’ll say
almost nothing of the connections with number the-
ory.
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The group 4 is the stabilizer of B .
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For C in , C and D generate a lattice in . An ele-
ment E in FG H I�J K takes this to the lattice spanned by

L C MN and O C MP , which span the same lattice. This
is similar to the lattice spanned by I L C M N KQ I O C MP K

and D .

In fact, points of the quotient R S parametrize simi-
larity classes of lattices in .
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The fundamental domain of T is the region

U V W�X Y Z�[ \^] V W�X _ `[ `ba Vc

There is a simple reduction algorithm transforming
an arbitrary [ to one in this region, a succession of
transformations

de [ f U g [ U h

ie [ f U g U V W [
The algorithm stops because in every cycle j in-
creases. It is also related to the problem of finding
a relatively orthogonal basis for lattices.
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y = Y

Γ ∩ P\HY ↪→ Γ\H (Y ≥ 1)Γ ∩ P\HY ↪→ Γ\H (Y ≥ 1)
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k l
m n : the image of op qsr t has height u v mxwr .
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The problem
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yz|{ } y~ { � y �{
�{

} �{ �{
� ~ { � �{
� �{

y } y~ y �
�{

13



The differential operator is essentially self-adjoint
on ��� ��� � � .

What is its spectrum?

This is a special case of another question. Func-
tions on � � may be identified with functions on

� � fixed on the right by . The operator is the
restriction to of the Casimir element � of �� � ,
which lies in the centre � �� � .

What is the decomposition of � � ��� � � into eigenspaces
of � , or (equivalently) irreducible unitary representa-
tions of ?
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The first step is to make a simple decomposition.
Any reasonable� -invarant � on is invariant under
integral horizontal translations, so

� ��� �� � �x� �� � � ���|� �� �� �

The function � is called cuspidal if the constant term

�� vanishes. With mild conditions on � , the differ-
ence ��� � � vanishes very rapidly at � . The subspace

 � ¡¢£ ¤¦¥ §¨© �� ª �
decomposes into finite-dimensional eigenspaces of

(looks like  � of a compact Riemannian manifold).
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«­¬ ® «­¬ ¯°± ²³± ´ ° ´µ·¶ «­¬ ¸ ³ µ ¯¹ º ² º

® «­¬ ¯°± ²³± ´ ° ´µ·¶ «­¬ ¯ ´µ » ³ ¸¼½ ¶ ¾ ¿À

All three of these components are related to number
theory.

The spectrum of « ¬ ¯° ± ²³± ´ ° ´ µ is ÁÃÂ Ä Å Â ¿ Æ�Ç È , and we
can describe the eigenfunctions contributing to it
rather explicitly.

The decomposition of « ¬ ¯ ´ µ » ³ ¸¼ ½ is a mystery. The few
constituents explicitly known are related to represen-
tations of Galois groups.
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The spaces ÉËÊ ÌÍ ÎÏÐ ÑÒ Ñ and ÉÊ ÏÓÔ Ò ÍÔ ÕÓ Õ Î are linked to-
gether.

The continuous spectrum directly involves

Ö ×�Ø ÙxÚ Û ×�Ü ØÞÝ ß Ù

Û ×�Ü Ø Ù à Û ×�Ø ÙÚ áâ ã äÊ å ×�Ø æ Ü Ùç ×�Ø Ù èêé

The function Ö ×�Ø Ù has a simple pole at Ø Ú ß and the
volume of å ë is its residue there.

We have ì Ö ×�Ø Ù ìÚ ß on ×�Ø Ù Ú ß æ Ü and the distribu-
tion of the eigenvalues on É Ê Ï Õ Î í¦Í Ìîï is related to the
winding of Ö ×�Ø Ù on that line.
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The principal tool is the trace formula, which still
holds many secrets, even for ðñ ò ó�ô õ .
At any rate, understanding it requires understand-
ing the continuous spectrum, which is spanned by
Eisenstein series.
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Eisenstein series
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For ö in the function ÷ø is a function on invari-
ant with respect to and indeed ù úû .

÷ø ü ö ý öÞþ ÿ � ÷ø �

The Eisenstein series is

� ø ü
� �� � �

÷ ý� ý	� � �ø 
�� 
� � 


converges for ý ö ��� ÿ . Since ÷ ø ü ö ý öþ ÿ �

� ø ü ö ý öÞþ ÿ � � ø �
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For � � �� � ��� � since

� �
� �

� �
 ! � � " �  � " � !
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this is also
# $&% ' (*)+ , # '.- /�0 1

23
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These series were first investigated by Maass, af-
ter some hints by Hecke. The hard theorems about
them were first proven by Selberg.
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The Laplacian is negative, which means that its spec-
trum is contained in o	p qsr t . This corresponds to
Eisenstein series u v with o	w xzy { |�} as well as w

on the line segment ~r q { t .
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Theorem. The function � � continues meromorphi-
cally into all of . It satisfies the functional equation

� ��� � �	� � � �e� � � �	� �� � ��� ��� � �

� ��� � �

Near � � �

� ��� � � � � �	� � � �e� �

In �	� �W� � � � it has exactly one pole, which is
a simple pole with residue the constant function

� � � ��� � .
A consequence is that

� �	� � � � �� � �� �
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The Plancherel theorem
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If � �	� � is a continuous function of compact support
on � ��� �� � , define the integral

�   �	¡ �z¢ �
� £� ¤ ¥B¦ §�¨ © ª�« � �	� � � ¦­¬ � ®

Then
¯ �   ¯ « ¢ � ¯ � ¯ « ®

The map �±° �   induces an isometry (up to a con-
stant factor)

² �s³ ´ « � � ��� �� � �µ � � �·¶ � �¢ ¸ �	� � � �	� �¹

with ´ « º»¼ ½¾¼ ¿ » ¿À ��Á Â � .
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The principal theorem is the decomposition

ÃÅÄ Æ ÃÄ ÇÈÉ ÊËÉ Ì È ÌÍÏÎ ÐÄ Ñ ÒÍ Ë Ó ÌÔÕ Î ÃÄ Ç ÌÍ Ö Ë Ó ÔÕ ×

along with variants.
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Ø ÙÛÚ

Ü
Ý Þß à áBâ ã�ä å æ�çè é	ê ë Ø â­ì ê

Ú Ü
Ý Þß à áBâ ã�ä å æ�çè é	ê ë	í é	ê ë Ø åeî â ì ê

Ú Ü
Ý Þß à áBâ ã�ä å æ�çè é Ü·ï ê ë	í é Ü·ï ê ë Ø â­ì ê

Ú Ø Ù ð

where

è ñ é	ê ëÚ è é	ê ëóò í é Ü·ï ê ëè é Ü ï ê ë

Ý

í é	ê ëè ñ é	ê ëÚ è ñ é Ü ï ê ë
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In the rest of this talk, I’ll try to give some idea of
how the proof of meromorphic continuation of ô õ

goes.
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The constant term
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Any function ö on ÷ ø is invariant under ÷ ù ú û ü ,
and may therefore be expressed in a Fourier series

ö ý	þ ÿ� � � û
�

ö � ý � ��� � �� �	

ö � ý � � û



� ö ý	þ ÿ� � ��� � � �� �	 
 þ �

ö � ý � � is called the constant term of ö
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If � satisfies a certain mild growth condition on the
fundamental domain as � � � � , then � � � � is
rapidly decreasing as � � � � .

The constant term controls the asymptotic behaviour
of � .

The cuspidal component of ��� is that of functions
whose constant term vanishes, and cuspidal func-
tions are of rapid decrease at � . The cuspidal com-
ponent looks like �� of a compact Riemannian sur-
face.
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Since � ��� � � ���  ! � � and commutes with , if
" �# ! is the constant term of � � then

#$ "&% % � � � ��  ! "'

This has solutions
# � ( #) * � � � �  +-, !

Since we already know that # � is the dominant term
of � � for � � !/.  

" �# !� # � 01 � � ! #) * �

� �� # � 01 � � ! #) * � 0 rapidly decreasing stuff

� �� # �� is square integrable if � � !/.  +-,
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Analytic continuation
by spectral analysis of the Laplacian
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Fix 2 3 4 . Let 5 67 8 be a
smooth function identically 4

for large 7 and 9 for 7 : 2 . y −→

The function 5 may be identi-
fied with one on ; < . If = is
any function on ; < satisfying
a mild growth condition then

> ? =A@ =CB 5ED = F will be rapidly
decreasing at G .
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For H in the region of convergence,I JLK MEN O J will be
in P�Q . If RTS H U H K V W then

U K R W UI J K M N O J WS U K R WI J K U K R W U M N O J W

S K U K R W U M N O J W

a function of compact support on X Y , defined for
all H . Since R is not in the spectrum of the self ad-
joint operator , U K R WZ [ is a bounded operator on

P\Q U X Y W , andI JK MN O J will be the unique function in

P�Q U X Y W satisfying this equation. This allows us to
extend the definition to the whole region U H W/] V ^-_

except the segment U V ^-_ ` V a , since this region is in
the complement of the spectrum.
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will define b c through-
out this region
compatibly with
its definition by
the series.
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Meromorphic continuation
by Fredholm theory and Hecke operators
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A compactly supported function r on that’s invari-
ant under non-Euclidean rotation lifts to a function
on that’s left and right invariant with respect to
multiplication by . If s is a function on t u then

v sAw x s y�z { | r y { |�} {

is again a function on t u . Convolution makes
the set of all such functions into a ring y u ~ |

(that’s for ��� � ).
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Geometrically speaking, this operator replaces the
value of � at a point � by a weighted integral of its
average values on non-Euclidean circles concentric
at � . The functions � are what Selberg called point-
pair invariants.

If � is the characteristic function of the unit disc
around � , the operator � replaces � at any point �

by the average value of � over the unit disc centred
at � .
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The operator � commutes with the actions of
and its Lie algebra � on . The function �� is, up to
scalar, unique with the two properties

� ��
�� � �

� � ��
� �

� � �� �
Therefore there exists a homomorphism �� from

� � � � to such that

� �� � �� �� � �� �
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Define a truncated form of � :

��� � ��� � � �� � � �   �� �

This is a compact operator, hence by the Fredholm
theory its resolvent

� � � ¡ �¢ £

is meromorphic. If ¡ ¤ � ¥ ¤ �¦ � then in the region of
convergence

� � � ¡ ¤ �-§ ¤ � � � § ¤ � ¡ ¤ § ¤ �

� � �� � � ¨ � ¤ ©ª ��« � � £¢ ¤ ¬

� � ¡ ¤ � �� � ¨ � ¤ © ª ��« � � £¢ ¤ ¬
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­ ®°¯ ± ² ³-´ ²�µ ¯ ± ² ¶ ­· ³ ¸ · ² ¹º ­�» ³ ·¼ ½ ² ¾

If we could solve

­ ® ¯ ± ² ³-´ ¿² µ ¯ ± ² ¶ ­· ³ · ²

then we could set

´ ²�µ ´ ¿² ¹º ­�» ³-´ ¿¼ ½ ²ÁÀ
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To solve

Â Ã°Ä Å Æ Ç-È ÉÆLÊ Ä Å Æ Ë ÂÌ Ç Ì Æ Í

we want to rewrite it as an equation with something
in ÎÐÏ on the right hand side. SetÈ É ÉÆ Ê È ÉÆÄ Ë ÂÌ Ç Ì Æ ,
which gives

Â ÃÄ Å Æ Ç-È É ÉÆ Ê Â ÃÄ Å Æ Ç-È ÉÆÑÄ Â ÃÄ Å Æ Ç Ë ÂÌ Ç Ì Æ

Ê Ã Ë ÂÌ Ç Ì Æ

Ê Ã Ë ÂÌ Ç Ì ÆÄ Ë Ã Ë ÂÌ Ç Ì Æ

and this right hand side has compact support.
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We can find ÒÔÓ Ó Õ as a meromorphic function of Ö

throughout , then find Ò Õ , and finally set

Ò Õ�× ÒÓ ÕÙØ Ú Û Ö Ü ÒÓ ÝßÞ Õà

if we can somehow find the meromorphic continua-
tion of Ú Û Ö Ü . But

Û á°â ã Õ Ü Ò Õ�× ä
which means that

Û á°â ã Õ Ü ÒÓ Õ × â Ú Û Ö Ü Û á°â ã Õ Ü ÒÓ ÝßÞ Õ
so we can define Ú Û Ö Ü as the ratio of the two sides.
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Summary:

Spectral analysis of allows us to analytically con-
tinue å æ to all but ç-è é-ê ë è ì in ç�í î/ï è é-ê . It also
allows us to get growth estimates, since there is a
classical bound on ð ñ ò ðó ô .
For meromorphic continuation we use Hecke opera-
tors.

From the first, we get å æ�õ ö ç�í î å ôó æ , hence ö ç�í î ö ç-è ñ

í îõ è . Also ÷ ö ç�í î ÷õ è on ç�í îõ è é-ê .

The simplicity of the pole at í õ è follows from an
explicit formula for ø ù å æ .
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The Plancherel formula ú ú ú Completeness of the dis-
crete spectrum.
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