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In these notes I will discuss how I used a computer to verify the main conjecture of Kottwitz (1997) for the groupsE6, E7, E8, and the subsidiary one for F4. At the end I will include tables of the relevant computer output. I
begin by recalling briefly what is to be computed.

The main conjecture

SupposeW to be a finiteWeyl group. An involution inW is any element of order at most two. If � is an involution,
letW� be the centralizer of �. A root � is called imaginary if �� = �� (as opposed to real if �� = �). Let I� be
the set of all imaginary roots of �. Any element commuting with � permutes I� . Therefore ifP� = Y�>0;�2I� �
then for any w inW� wP� = sgn�(w)P�
where sgn� = �1 is amultiplicativehomomorphism fromW� to f�1g. It can be calculated explicitly as (�1)`�(w)
where `�(w) = #f� 2 I� j � > 0; w�1� < 0g = I� \ �w
if �w = f� > 0 j w�1� < 0g :
Kottwitz’ conjecture concerns the multiplicity of sgn� in the restriction to W� of irreducible representations ofW . In other words we must computem(�;E) = hsgn�; E jW�i = 1#W� XW� sgn�(w)�E(w)
for the irreducible representations E ofW .
Some cases are simple. If � = 1 then it has no imaginary roots and sgn� is the trivial character of W . In this
casem(�;E) = 0 unless E is equal to the trivial character. If the longest element w` ofW happens to be�1 and� = w` then all roots are imaginary and sgn� is then the usual sign-character sgnW of W . Again in this casem(�;E) = 0 unless E = sgnW itself. Along these lines, it can be seen more generally that if �1 lies inW thenm(�;E) = m(��; E�) whenever �� = ��, E� = E � sgnW .
Kottwitz’ conjecture asserts that the sum m(E) =X� m(�;E)
(where the sum is over representatives of all conjugacy classes of involutions) is equal to the Lustzig-Fourier

transform of a function '0 which I do not define here. (But I shall recall later exactly what the computation has to
agree with.) For classical groups as well as G2 and F4, Kottwitz was able to verify his conjecture by hand. This
leaves the exceptional groups E6 (51; 840 elements), E7 (2; 903; 040 elements), and E8 (696; 729; 600 elements),
for which it was apparently necessary to do the computations by machine.

At first it looked as though it would be a great deal of work just getting the known character and conjugacy

class information into computer-readable form, but luckily — and just in time — Meinolf Geck made available

to us some recently developed programs for use with the well known algebra package GAP, which were able
to produce exactly the information we needed. (These files are part of a larger project called CHEVIE involving
Geck and several of his colleagues, and are available for public use. For information, see the reference to CHEVIE
at the end of this note.)
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Once we had the character and conjugacy class data that we needed in a form which a program could read, it

was not too difficult to write a program that could calculate the multiplicities. It was something of a challenge to
construct an efficient program, since the groups E6, E7, and E8 are so large. The basic technique in all cases was
the same — for each one of the involution classes f�g inW the whole group was scanned to find elements in the
centralizerW� (the order of the centralizer is known, and is one of the data produced by GAP). For each w inW�
the parity of I� \ �w was calculated as well as its conjugacy class inW , from which the termsm(�;E) could be
calculated, again from the GAP data.

The details of the calculation were important, if the program were to be fast. The fastest known way to scan

the group, as far as I can see, is that described in Casselman (1994), and involves building and then traversing

the automaton describing the ShortLex language of strings of simple generators for elements inW which are
of minimal length and lexicographically least. The fastest way to perform multiplication in the group is to use

the ideas of du Cloux (1995), based in turn on ideas of Deodhar, representing an element ofW as a sequence of

elements of Weyl group cosets (with respect to smaller Weyl groups), using canonical representatives of these
cosets. Here the basic calculation is to multiply an element of the group, represented as a sequence of coset

representatives, by a simple generator si. The group E6 is in fact small enough so that in fact the whole table ofwsi can be stored in an array. It would have been possible to use tables of representatives already constructed
by du Cloux, but in fact the program built these tables on the fly, using the multiplication algorithm described in

Casselman (1994), which in turn is based on ideas of Brink-Howlett (1993).

There seems to be no uniform efficient way to handle the conjugacy class problem for these groups. Here again,

the group E6 is small enough that the most efficient and dependable thing to do was simply to build a list, in
the obvious way, of classes for every element in the group. For E8, Geck suggested using the fact that the map
from conjugacy classes of E8 to those in the group of permutations of its 240 roots is an embedding. In other
words, a conjugacy class in E8 is distinguished by its representation in terms of cycles inS240. There are simple
and efficient algorithms for finding the cycle representation of a permutation, but nonetheless to do this several

million times for permutations of 240 items is necessarily a slow business.
For E7 there are 126 roots. The map from conjugacy classes into conjugacy classes of S126 fails to be an
injection, but the map into conjugacy classes in E8 is injective. Those classes in E7 which coincide in S126 were
distinguished in this way.

Thus in traversing the group there were essentially three things to do: (1) tell whether the element w commutes
with the current involution �; (2) calculate sgn�(w); (3) find the conjugacy class of w. The data needed for these
calculations is easily updated in going from w to ws with ws > w, which is the way in which the automaton is
traversed.

The amount of memory needed to run the program was negligible, but the amount of time required was

substantial. I used several machines to develop the program with the small An and F4, to compare with
Kottwitz’ calculations, and then to deal with the cases E6 and E7, which are still relatively small. They took a
few seconds and a fewminutes, respectively. The groupE8 is large by almost any standard, however. It contains
almost a billion elements, and for each one of these a large number of calculations had to be made. The final run
for E8 took about 36 hours on a SPARC 20.
The tables of m(�;E) will be exhibited at the end of this note. In order to understand exactly how they imply
Kottwitz’ conjecture, I present here some relevant data mentioned in Kottwitz’ article, but in a tabular form so
that immediate comparison is straightforward. According to Lusztig (1984), the irreducible representations E ofW are partitioned into families F . To each family is associated a finite group G, and to G is associated a finite setM(G) of conjugacy classes of pairs (g; �), where g is an element of G and � an irreducible representation of the
centralizer Gg . For this theory, refer to Lusztig (1984), Chapter 13 of Carter (1985), and Lusztig (1987). Each family
maps injectively into a subset ofM(G), but this map is not surjective. In the tables below, the image (g; �) of eachE is indicated. Kottwitz’ conjecture concerning the m(E) is that they agree with the Lusztig-Fourier transform
of a certain function '0 onM(G) defined in x1.10 of Kottwitz’ article. Kottwitz has listed the relevant values ofb'0 in his article; it will be simpler for the reader to verify his conjecture from my calculations if he has these in a
tabular form.

Table of b'0



Computing multiplicities 3G (g; �) b'0(g; �)S1 (1; 1) 1S2 (1; 1) 2(g2; 1) 0(1; ") 0S3 (1; 1) 2(g2; 1) 0(1; r) 1(g3; 1) 1(1; ") 0S4 (1; 1) 3(1; �1) 1(1; �2) 0(1; �) 2(g2; 1) 0(g2; "00) 0(g02; 1) 1(g02; "00) 0(g02; "0) 0(g3; 1) 1(g4; 1) 0S5 (1; 1) 3(g3; 1) 2(g02; 1) 1(1; �) 2(1; �1) 2(g5; 1) 1(g3; ") 0(1; �0) 1(g02; "00) 0(1; �2) 0(g02; "0) 0(1; �3) 0(g2; 1) 0(g4; 1) 0(g6; 1) 0(g2; r) 0(g2; ") 0
Throughout the tables, Carter’s name conventions for both conjugacy classes and representations ofW are fol-

lowed (see Carter (1972) and Carter (1985)). Carter’s naming scheme for representations refers to a representation'n;d where n is its dimension and d is the lowest degree it appears in the canonical representation of W onS(V ), the symmetric algebra of the root space V . That for conjugacy classes takes advantage of the fact that
most conjugacy classes in a Weyl group are Coxeter elements in some Weyl subgroup. The roots, hence the

numbering of the elementary reflections indexed in the reduced expressions, are numbered as in Bourbaki (1972).

The characters and other conjugacy class data were provided by GAP.

As Kottwitz mentions, it was the computer results for E7 (which appeared before those forE8) which forced him
to deal with the six exceptional representations (two of E7, four of E8) specially. As far as I know, it is only in the
paper Opdam (1995) that any theoretical explanation of some of the phenomena attached to these occurs in the

literature.

I include here also the tables for the exceptional groupsG2 and F4, which will perhaps allow the reader to orient
himself in reading these tables, even though they are treated by Kottwitz directly.

The subsidiary conjecture
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Kottwitz’ second conjecture is that if � is an involution, then the number of involutions in any right cell [�] and
conjugate to � is equal to m(�; [�]) =Xnim(�;Ei)
if the canonicalW -representation [�] associated to [�] has the irreducible decomposition[�] =XniEi :
He demonstrates this in a number of cases, but leaves it open for several others. Again, using a computer
program, we verified this to be true for F4. This program was more interesting than the one used previously,
since it involved computing explicitly all the W -graphs associated to the right cells of W . (It was also more
interesting because I implemented it one year after the other, and this time completely in Java.) Explicitly,
we have the following table of data, which in combination with the table of the m(�;E) for E an irreducible
representation of F4 implies the result:
Number of equivalent cells Involution classes in cell Decomposition1 1 '1;02 A1, eA1 '002;4 + '4;12 A1, eA1 '02;4 + '4;19 A1 � eA1 '9;28 eA1 '008;38 A1 '08;38 A31 '008;98 A21 � eA1 '08;99 A1 � eA1 '9;101 [5] A1 � eA1, [2] A21 '001;12 + 2'009;6 + '006;6 + '12;4 + '004;7 + '16;53 [4] A1 � eA1, A21 '009;6 + '06;6 + '12;4 + '004;7 + '16;54 [2] A21, [5] A1 � eA1 '4;8 + '009;6 + '09;6 + '006;6 + '12;4 + 2'16;53 [4] A1 � eA1, A21 '09;6 + '06;6 + '12;4 + '04;7 + '16;52 A31, A21 � eA1 '002;16 + '4;131 [2] A21, [5] A1 � eA1 '01;12 + 2'09;6 + '006;6 + '12;4 + '04;7 + '16;52 A31, A21 � eA1 '02;16 + '4;131 A41 '1;24

By the time this paper appears, the case E6 ought to be decided. Doing this in the obvious way involves an
enormous amount of memory to record the Bruhat order, but this problem can be alleviated again by suggestions

of du Cloux, following Deodhar.

References

1. Brigitte Brink and Robert Howlett, ‘A finiteness property and an automatic structure for Coxeter groups’,

Math. Ann. 296 (1993), pp. 179–190.

2. R. W. Carter, ‘Conjugacy classes in the Weyl group’, Comp. Math. 25 (1972), pp. 1–59.

3. R. W. Carter, Finite groups of Lie type, Wiley, 1985.

4. W. A. Casselman, ‘Automata to perform basic calculations in Coxeter groups’, in Representations of groups,
CMS Conference Proceedings (published by the AMS) 16 (1995), pp. 35–58.

5. Fokko du Cloux, ‘A transducer approach to Coxeter groups’, preprint, Institut de Mathématiques et Informa-
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The tables

The group G2
It has 12 elements.
Conjugacy class data:

Carter’s name Representative reduced word expression Conjugacy class size1 ; 1eA1 [1] 3A1 [2] 3A1 � eA1 [121212] 1
Multiplicities:G E (g; �) m(�;E)1 eA1 A1 A1 � eA1m(E)S1 '1;0 1 0 0 0 1'1;6 0 0 0 1 1S3 '2;1 (1; 1) 0 1 1 0 2'01;3 (1; r) 0 0 1 0 1'001;3 (g3; 1) 0 1 0 0 1'2;2 (g2; 1) 0 0 0 0 0
The group F4
It has 1152 elements.
Conjugacy class data:

Carter’s name Representative reduced word expression Conjugacy class size1 ; 1A41 [121321323432132343213234] 1A21 [2323] 18A1 [1] 12A31 [232343234] 12eA1 [3] 12A21 � eA1 [121321323] 12A1 � eA1 [13] 72
Multiplicities:

The group F4 is unusual, in that Kondo’s names are still commonly used, and in particular in Lusztig (1984).
They are therefore given here, just after those of Carter.G E (Kondo) (g; �) m(�;E)1 A41 A21 A1 A31 eA1 A21 � eA1 A1 � eA1 m(E)S1 '1;0 11 1 0 0 0 0 0 0 0 1'1;24 14 0 1 0 0 0 0 0 0 1'9;10 94 0 0 0 0 0 0 0 1 1'008;3 81 0 0 0 0 0 1 0 0 1



Computing multiplicities 6'08;3 83 0 0 0 1 0 0 0 0 1'008;9 84 0 0 0 0 1 0 0 0 1'08;9 82 0 0 0 0 0 0 1 0 1'9;2 91 0 0 0 0 0 0 0 1 1S2 '4;1 42 (1; 1) 0 0 0 1 0 1 0 0 2'002;4 21 (g2; 1) 0 0 0 0 0 0 0 0 0'02;4 23 (1; ") 0 0 0 0 0 0 0 0 0S2 '4;13 45 (1; 1) 0 0 0 0 1 0 1 0 2'002;16 24 (g2; 1) 0 0 0 0 0 0 0 0 0'02;16 22 (1; ") 0 0 0 0 0 0 0 0 0S4 '12;4 121 (1; 1) 0 0 1 0 0 0 0 2 3'009;6 92 (g02; 1) 0 0 0 0 0 0 0 1 1'09;6 93 (1; �1) 0 0 0 0 0 0 0 1 1'001;12 12 (g02; "0) 0 0 0 0 0 0 0 0 0'01;12 13 (1; �2) 0 0 0 0 0 0 0 0 0'4;8 41 (g02; "00) 0 0 0 0 0 0 0 0 0'004;7 43 (g4; 1) 0 0 0 0 0 0 0 0 0'04;7 44 (g2; "00) 0 0 0 0 0 0 0 0 0'06;6 61 (g3; 1) 0 0 0 0 0 0 0 1 1'006;6 62 (1; �) 0 0 1 0 0 0 0 1 2'16;5 161 (g2; 1) 0 0 0 0 0 0 0 0 0
The group E6
It has 51; 840 elements.
Conjugacy class data:

Carter’s name Representative reduced word expression Conjugacy class size1 ; 1A41 [343243543245] 45A21 [14] 270A1 [1] 36A31 [146] 540
Multiplicities:G E (g; �) m(�;E)1 A41 A21 A1 A31 m(E)S1 '1;0 1 0 0 0 0 1'1;36 0 1 0 0 0 1'6;1 0 0 0 1 0 1'6;25 0 0 0 0 1 1'20;2 0 0 1 0 0 1'20;20 0 1 0 0 0 1'24;6 0 0 1 0 0 1'24;12 0 1 0 0 0 1'60;5 0 0 0 0 1 1'60;11 0 0 0 0 1 1'64;4 0 0 1 0 0 1'64;13 0 0 0 0 1 1'81;6 0 0 1 0 0 1'81;10 0 0 1 0 0 1S2 '30;15 (1; 1) 0 0 0 0 2 2'15;17 (1; ") 0 0 0 0 0 0'15;16 (g2; 1) 0 0 0 0 0 0



Computing multiplicities 7S2 '30;3 (1; 1) 0 0 0 1 1 2'15;5 (1; ") 0 0 0 0 0 0'15;4 (g2; 1) 0 0 0 0 0 0S3 '80;7 (1; 1) 0 0 0 0 2 2'10;9 (g3; 1) 0 0 0 0 1 1'20;10 (1; ") 0 0 0 0 0 0'60;8 (g2; 1) 0 0 0 0 0 0'90;8 (1; r) 0 0 0 0 1 1
The group E7
It has 2; 903; 040 elements.
Conjugacy class data:

Carter’s name Representative reduced word expression Conjugacy class size1 ; 1A61 [767567456724567345672456345243] 63(A001 )4 [545245345243] 315A21 [75] 945(A01)4 [7523] 3780A71 [767567456724567345672456345243134567245634524313456724563452431]1A1 [7] 63(A01)3 [752] 315A51 [7545245345243] 945(A001 )3 [753] 3780
Multiplicities:

The exceptional classes are marked Exc.G E (g; �) m(�;E)1 A61 (A001 )4 A21 (A01)4 A71 A1 (A01)3 A51 (A001 )3 m(E)S1 '1;0 1 0 0 0 0 0 0 0 0 0 1'1;63 0 0 0 0 0 1 0 0 0 0 1'7;46 0 1 0 0 0 0 0 0 0 0 1'7;1 0 0 0 0 0 0 1 0 0 0 1'21;36 0 0 1 0 0 0 0 0 0 0 1'21;3 0 0 0 0 0 0 0 1 0 0 1'27;2 0 0 0 1 0 0 0 0 0 0 1'27;37 0 0 0 0 0 0 0 0 1 0 1'105;6 0 0 0 0 1 0 0 0 0 0 1'105;21 0 0 0 0 0 0 0 0 0 1 1'105;12 0 0 1 0 0 0 0 0 0 0 1'105;15 0 0 0 0 0 0 0 1 0 0 1'168;6 0 0 0 1 0 0 0 0 0 0 1'168;21 0 0 0 0 0 0 0 0 1 0 1'189;22 0 0 0 0 1 0 0 0 0 0 1'189;5 0 0 0 0 0 0 0 0 0 1 1'189;20 0 0 1 0 0 0 0 0 0 0 1'189;7 0 0 0 0 0 0 0 1 0 0 1'210;6 0 0 0 1 0 0 0 0 0 0 1'210;21 0 0 0 0 0 0 0 0 1 0 1'210;10 0 0 0 0 1 0 0 0 0 0 1'210;13 0 0 0 0 0 0 0 0 0 1 1'378;14 0 0 0 0 1 0 0 0 0 0 1'378;9 0 0 0 0 0 0 0 0 0 1 1S2 '56;3 (1; 1) 0 0 0 0 0 0 1 0 0 1 2



Computing multiplicities 8'35;4 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'21;6 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '56;30 (1; 1) 0 1 0 0 1 0 0 0 0 0 2'35;31 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'21;33 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '120;4 (1; 1) 0 0 0 1 1 0 0 0 0 0 2'15;7 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'105;5 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '120;25 (1; 1) 0 0 0 0 0 0 0 0 1 1 2'15;28 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'105;26 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '405;8 (1; 1) 0 0 0 0 2 0 0 0 0 0 2'216;9 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'189;10 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '405;15 (1; 1) 0 0 0 0 0 0 0 0 0 2 2'216;16 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'189;17 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '420;10 (1; 1) 0 0 0 1 1 0 0 0 0 0 2'84;12 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'336;11 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '420;13 (1; 1) 0 0 0 0 0 0 0 0 1 1 2'84;15 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'336;14 (1; ") 0 0 0 0 0 0 0 0 0 0 0
Exc '512;11 (1; 1) 0 0 0 0 0 0 0 0 0 1 1'512;12 (1; ") 0 0 0 0 1 0 0 0 0 0 1S3 '315;7 (1; 1) 0 0 0 0 0 0 0 0 0 2 2'280;8 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'280;9 (1; r) 0 0 0 0 0 0 0 0 0 1 1'70;9 (g3; 1) 0 0 0 0 0 0 0 0 0 1 1'35;13 (1; ") 0 0 0 0 0 0 0 0 0 0 0S3 '315;16 (1; 1) 0 0 0 0 2 0 0 0 0 0 2'280;17 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'280;18 (1; r) 0 0 0 0 1 0 0 0 0 0 1'70;18 (g3; 1) 0 0 0 0 1 0 0 0 0 0 1'35;22 (1; ") 0 0 0 0 0 0 0 0 0 0 0
The group E8
It has 696; 729; 600 elements.
Conjugacy class data:

Carter’s name Representative reduced word expression Conjugacy class size1 ; 1A81 [878678567845678145678345678145673456145341134567814567345614 : : :534113456781456734561453411345678145634514313456714563451431]1(A01)4 [545245345243] 3150A21 [61] 3780A61 [767567456724567345672456345243] 3780(A001 )4 [7523] 113400A1 [3] 120



Computing multiplicities 9A71 [767567456724567345672456345243134567245634524313456724563452431]120A31 [861] 37800A51 [7545245345243] 37800
Multiplicities: The exceptional classes are marked Exc.G E (g; �) m(�;E)1 A81 (A01)4 A21 A61 (A001 )4 A1 A71 A31 A51 m(E)S1 '1;0 1 0 0 0 0 0 0 0 0 0 1'1;120 0 1 0 0 0 0 0 0 0 0 1'35;2 0 0 0 1 0 0 0 0 0 0 1'35;74 0 0 0 0 1 0 0 0 0 0 1'525;12 0 0 1 0 0 0 0 0 0 0 1'525;36 0 0 1 0 0 0 0 0 0 0 1'567;6 0 0 0 1 0 0 0 0 0 0 1'567;46 0 0 0 0 1 0 0 0 0 0 1'2100;20 0 0 1 0 0 0 0 0 0 0 1'2835;14 0 0 0 0 0 1 0 0 0 0 1'2835;22 0 0 0 0 0 1 0 0 0 0 1'6075;14 0 0 0 0 0 1 0 0 0 0 1'6075;22 0 0 0 0 0 1 0 0 0 0 1'8;1 0 0 0 0 0 0 1 0 0 0 1'8;91 0 0 0 0 0 0 0 1 0 0 1'560;5 0 0 0 0 0 0 0 0 1 0 1'560;47 0 0 0 0 0 0 0 0 0 1 1'3240;9 0 0 0 0 0 0 0 0 1 0 1'3240;31 0 0 0 0 0 0 0 0 0 1 1'4200;15 0 0 0 0 0 0 0 0 0 1 1'4200;21 0 0 0 0 0 0 0 0 1 0 1'4536;13 0 0 0 0 0 0 0 0 1 0 1'4536;23 0 0 0 0 0 0 0 0 0 1 1S5 '4480;16 (1; 1) 0 0 0 0 0 3 0 0 0 0 3'3150;18 (g3; 1) 0 0 0 0 0 2 0 0 0 0 2'4200;18 (g02; 1) 0 0 0 0 0 1 0 0 0 0 1'4536;18 (1; �) 0 0 0 0 0 2 0 0 0 0 2'5670;18 (1; �1) 0 0 0 0 0 2 0 0 0 0 2'420;20 (g5; 1) 0 0 0 0 0 1 0 0 0 0 1'1134;20 (g3; ") 0 0 0 0 0 0 0 0 0 0 0'1400;20 (1; �0) 0 0 0 0 0 1 0 0 0 0 1'2688;20 (g02; "00) 0 0 0 0 0 0 0 0 0 0 0'1680;22 (1; �2) 0 0 0 0 0 0 0 0 0 0 0'168;24 (g02; "0) 0 0 0 0 0 0 0 0 0 0 0'70;32 (1; �3) 0 0 0 0 0 0 0 0 0 0 0'7168;17 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'1344;19 (g4; 1) 0 0 0 0 0 0 0 0 0 0 0'2016;19 (g6; 1) 0 0 0 0 0 0 0 0 0 0 0'5600;19 (g2; r) 0 0 0 0 0 0 0 0 0 0 0'448;25 (g2; ") 0 0 0 0 0 0 0 0 0 0 0S2 '112;3 (1; 1) 0 0 0 0 0 0 1 0 1 0 2'84;4 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'28;8 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '112;63 (1; 1) 0 0 0 0 0 0 0 1 0 1 2'84;64 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'28;68 (1; ") 0 0 0 0 0 0 0 0 0 0 0



Computing multiplicities 10S2 '210;4 (1; 1) 0 0 0 1 0 1 0 0 0 0 2'50;8 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'160;7 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '210;52 (1; 1) 0 0 0 0 1 1 0 0 0 0 2'50;56 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'160;55 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '700;6 (1; 1) 0 0 0 1 0 1 0 0 0 0 2'400;7 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'300;8 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '700;42 (1; 1) 0 0 0 0 1 1 0 0 0 0 2'400;43 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'300;44 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '2268;30 (1; 1) 0 0 0 0 1 1 0 0 0 0 2'972;32 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'1296;33 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '2268;10 (1; 1) 0 0 0 1 0 1 0 0 0 0 2'972;12 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'1296;13 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '2240;28 (1; 1) 0 0 0 0 0 2 0 0 0 0 2'1400;29 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'840;31 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '2240;10 (1; 1) 0 0 0 0 0 2 0 0 0 0 2'1400;11 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'840;13 (1; ") 0 0 0 0 0 0 0 0 0 0 0
Exc '4096;11 (1; 1) 0 0 0 0 0 0 0 0 1 0 1'4096;12 (1; ") 0 0 0 0 0 1 0 0 0 0 1
Exc '4096;26 (1; 1) 0 0 0 0 0 1 0 0 0 0 1'4096;27 (1; ") 0 0 0 0 0 0 0 0 0 1 1S2 '4200;12 (1; 1) 0 0 0 0 0 2 0 0 0 0 2'840;14 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'3360;13 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '4200;24 (1; 1) 0 0 0 0 0 2 0 0 0 0 2'840;26 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'3360;25 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '2800;13 (1; 1) 0 0 0 0 0 0 0 0 1 1 2'700;16 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'2100;16 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '2800;25 (1; 1) 0 0 0 0 0 0 0 0 1 1 2'700;28 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'2100;28 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '5600;15 (1; 1) 0 0 0 0 0 0 0 0 2 0 2'3200;16 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'2400;17 (1; ") 0 0 0 0 0 0 0 0 0 0 0S2 '5600;21 (1; 1) 0 0 0 0 0 0 0 0 0 2 2'3200;22 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'2400;23 (1; ") 0 0 0 0 0 0 0 0 0 0 0



Computing multiplicities 11S3 '1400;7 (1; 1) 0 0 0 0 0 0 0 0 2 0 2'1344;8 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'1008;9 (1; r) 0 0 0 0 0 0 0 0 1 0 1'448;9 (g3; 1) 0 0 0 0 0 0 0 0 1 0 1'56;19 (1; ") 0 0 0 0 0 0 0 0 0 0 0S3 '1400;37 (1; 1) 0 0 0 0 0 0 0 0 0 2 2'1344;38 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'1008;39 (1; r) 0 0 0 0 0 0 0 0 0 1 1'448;39 (g3; 1) 0 0 0 0 0 0 0 0 0 1 1'56;49 (1; ") 0 0 0 0 0 0 0 0 0 0 0S3 '1400;8 (1; 1) 0 0 0 0 0 2 0 0 0 0 2'1050;10 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'1575;10 (1; r) 0 0 0 0 0 1 0 0 0 0 1'175;12 (g3; 1) 0 0 0 0 0 1 0 0 0 0 1'350;14 (1; ") 0 0 0 0 0 0 0 0 0 0 0S3 '1400;32 (1; 1) 0 0 0 0 0 2 0 0 0 0 2'1050;34 (g2; 1) 0 0 0 0 0 0 0 0 0 0 0'1575;34 (1; r) 0 0 0 0 0 1 0 0 0 0 1'175;36 (g3; 1) 0 0 0 0 0 1 0 0 0 0 1'350;38 (1; ") 0 0 0 0 0 0 0 0 0 0 0


