
Notes on p-adic Whittaker functions

This contains a collection of notes and letters written by me to Freydoon Shahidi in the course of putting together

our joint paper, which appeared as ‘On irreducibility of standard modules for generic representations’, Annales
scientifiques de l’École Normale Supérieure 31 (1998), 561–589. It is available on the NUMDAM site:

http://www.numdam.org/

I do not know the exact dates the originals were written. The correspondence was initiated because I pointed out

to Freydoon that some brief remarks at the end of the paper on Whittaker functions by Joe Shalika and me had
gone largely unnoticed and almost completely unexploited.

1. A remark on Whittaker models for the unramified principal s eries

Suppose G to be a reductive group, unramified in the sense of [Casselman­Shalika]. Let P = MN be a minimal
parabolic subgroup. Let Ωψ be the Whittaker functional, defined on the subspace of all f with support on wℓN
by the integral

〈f,Ωψ〉 =

∫

N

ψ−1(n)f(wℓn) dn .

and extended by exactness.

At the end of [Casselman­Shalika] we show that there exists a canonical map from IN to Iψ,N for any admissible
representation I . Dualizing, we get from Ωψ an element of the dual of the Jacquet module of I .

Let I = Ind(χ | P,G) with χ unramified. Then for χ not fixed by any element of the Weyl group we have that
the canonical map takes Ωψ to ∑

w

γw(χ) Λw

where the Λw are the functionals defining the usual intertwining operators. In particular Λ1 takes f in I to f(1).
Thus for a near 0we have

〈Raf,Ωψ〉 =
∑

w

γw(χ) δ1/2(wχ)(a)〈f,Λw〉 .

The point is that the coefficients are independent of f . Therefore we can calculate the coefficient γw(σ) if we
know just one f with 〈f,Λw〉 6= 0. But the main result of [Casselman­Shalika] tells us what the coefficients are
for f = ϕK . In particular, we see that γ1(χ) never vanishes in the positive cone X++(P ) of characters where
|χ(aα)| < 1.

Now suppose that f lies in the kernel of theWhittaker map. Then 〈π(g)f,Ωψ〉 = 0 for all g inG. This means that
for a near enough to 0 (how near will depend on g)

〈π(a)π(g)v,Ωψ〉 =
∑

w

γw(χ) δ1/2(wχ)(a)〈π(g)f,Λw〉 = 0

for all g in G. By assumption on the regularity of χ, this implies that each one of the components must vanish
identically. Thus γ1(χ)〈π(g)f,Λ〉 = γ1(χ)f(g) = 0 for all g in G, and f(g)must vanish identically.



2. Brief remarks on the general case

Let now G, P = MN be arbitrary, ψ a generic character of N∅. Let σ be for the moment any irreducible
representation ofM with a Whittaker model 〈σ(g)v,ΩP 〉 for ψM , the restriction of ψ toM ∩ N∅. Let Ω be the
Whittaker functional on Ind(σ | P,G) determined by ΩP . The result at the end of [Casselman­Shalika] tells that
for σ in the positive cone and a near 1 in Awe have the equality

〈π(a)f,Ωψ〉 = γ1(σ)δ
1/2
P (a)σ(a)〈f(1),ΩP 〉 + · · ·

where the other terms are A­finite and do not involve σ(a). The same reasoning as before now tells us that it
suffices to show that γ1(σ) never vanishes (under the assumption on σ).

There is a very simple formula for γ1(σ), which I discovered by analogy with the formula for the asymptotic
behaviour of matrix coefficients. Formally we have

γ1(σ) = 〈Ωψ,Λopp〉

where Λopp is the functional determining by Frobenius reciprocity the intertwining operator

T : Ind(σ | P,G) 7→ Ind(σ | P opp, G)

given formally by

〈f,Λopp〉 =

∫

Nopp

f(n) dn .

This integral makes no sense in our circumstances, but we can reinterpret it as the constant c(σ) such that

T ∗Ωopp = c(σ)Ω .

Here Ωopp is the Whittaker function given by integration overN in Ind(σ | P opp, G).

At any rate, in order to see that the Whittaker model of Ind(σ | P,G) is an embedding for σ in the positive cone,
wemust show now that c(σ) 6= 0 if σ lies in that region. Now the intertwining operator is, as you know, a product
of operators where P is essentially maximal, so we may reduce to that case.

But this is where I have not been able to do what you have. If, however, I assume that P is minimal, then the
calculations of Keys (and myself) exhibit this constant c(σ) as an L­function, which can easily be seen not to
vanish.

I have told you the formula for γ1 without justification. I found what I remember to be a very simple proof of this

formula which I am having some trouble recalling. I do recall that I interpretedΩ as a limit ofK­finite functions,
and applied the formula for matrix coefficients, but there is some limit process I cannot remember. I’ll forward

that to you when I get it.

Presumably your global­local technique could be inserted into this argument to deal with the case of σ cuspidal.
I don’t see that it gets us any further along in the case when σ is not cuspidal, but perhaps you will get something
out of it I don’t.

The technique I have sketched has the apparent advantage over yours that it handles everything from scratch.

Otherwise it is certainly not essentially different.

Cheers.



3. Letter

Dear Freydoon,

In this note I will provewhat youmight call the fundamental formula relating asymptotics ofWhittaker functions

and intertwining operators.

Suppose that P = MN is a parabolic subgroup of G, ψ a nondegenerate character of N∅, ψP one of M ∩ N∅.
Let (σ, U) be an irreducible representation of M with a Whittaker model with respect to ψP determined by
the functional ΩP . Suppose that (σ lies in a region where (δ1/2σ, U) is a summand of the Jacquet module of
Ind(σ | P,G). Let Ω be a Whittaker functional on Ind(σ | P,G) and Ω be the one defined on Ind(σ | P ,G)
defined formally by the integral

〈f,Ω〉 =

∫

N

ψ−1(n)〈f(n),ΩP 〉 dn .

Let

T :

∫
(σ | P,G) → Ind(σ | P,G)

be the intertwining operator determined by the U ­valued functional

ΛN (f) =

∫

N

f(n) dn

so that Tf(1) = ΛN (f). Let γ be the constant such that

T ∗Ω = γΩ .

Suppose that f in Ind(σ | P ,G) has support on PN , say on Pω. Then

〈Raf,Ω〉 =

∫

N

ψ−1(n)〈f(na),ΩP 〉 dn

= δ−1/2(a)σ(a)

∫

ω

ψ−1(n)〈f(a−1na),ΩP 〉 dn

= δ1/2σ(a)

∫

a−1ωa

ψ−1(ana−1)〈f(n),ΩP 〉

∼ δ1/2(a)σ(a)

∫

N

〈f(n),ΩP 〉 dn

= δ1/2(a)σ(a)〈ΛN (f),ΩP 〉

since ψ(n) is 1 for n near 1. If we then look at arbitrary f in Ind(σ | P,G)we see that the full expansion has this
as the term we want (involving the summand δ1/2σ of the Jacquet module). But this can be expressed as saying
that for f in Ind(σ | P,G)

〈f, γ−1T ∗Ω〉 = γ−1〈Tf,Ω〉 ∼ δ1/2(a)σ(a)〈Tf(1),ΩP 〉 .

But since T is generically surjective, we see that for all ϕ in Ind(σ | P,G)

〈Raϕ,Ω〉 ∼ δ1/2σ(a)〈ϕ(1),ΩP 〉 .

which is what had to be proven. In all these expressions, we are referring to only the term we want in the
asymptotic expression for Whittaker functions, which can be taken as the leading term in the expansion if σ lies
in the appropriate region.

In other words, the claim follows formally from the simple calculation of asymptotic term for Ind(σ | P ,G).

Note that this result is not what I claimed in an earlier note, but it has the virtue of being true.



4. Letter

Dear Freydoon,

Let me show you what happens for SL2(F ). Of course you already know the answer, but the derivation will
probably be new to you.

Let σ be a character of F×, f in Ind(σ | P,G), ψ for the moment any character ofN (possibly even trivial).

Then at least formally

〈Raf,Ωψ〉 =

∫

N

ψ−1(n)f(wna) dn .

Here

w =

(
0 1

−1 0

)

and we may as well set

n =

(
1 x
0 1

)
.

Let

a =

(
α 0
0 α−1

)
.

In these circumstances

wn =

(
0 1

−1 −x

)

=

(
1 −x−1

0 1

) (
−x−1 0

0 −x

) (
1 0
x−1 0

)

wna =

(
1 −x−1

0 1

) (
−x−1 0

0 −x

) (
1 0
x−1 0

) (
α 0
0 α−1

)

=

(
1 −x−1

0 1

) (
−αx−1 0

0 −α−1x

) (
1 0

α2x−1 0

)

Fix an ideal a in oF , and define f by the condition that it have support on PN and the formula

f(nyν) = δ1/2(η)σ(η)

if

ν ∈

(
1 0
a 0

)
, y =

(
η 0
0 η−1

)

and 0 otherwise.

Assume σ in the region where the Whittaker integral converges. We have

〈Raf,Ωψ〉 =

∫

α2x−1∈a

ψ−1(x)δ1/2(αx−1)σ(−αx−1) dx

= σ(−1)δ1/2(α)σ(α)

∫

x−1∈α−2
a

ψ−1(x)δ−1/2(x)σ−1(x) dx

= σ(−1)δ1/2(α)σ(α)

∫

|x|−1≤|α|−2/Na

ψ−1(x)δ−1/2(x)σ−1(x) dx

= σ(−1)δ1/2(α)σ(α)

∫

|α|2Na≤|x|

ψ−1(x)δ−1/2(x)σ−1(x) dx



Now suppose that ψ is non­trivial. Then the integral is equal to

∫

|α|2Na≤|x|≤T

ψ−1(x)δ−1/2(x)σ−1(x) dx

as long as T is large enough. This expression is defined for all σ, and analytic in σ. If σ lies in the opposite region,
it may be expressed as

∫

|x|≤T

ψ−1(x)δ−1/2(x)σ−1(x) dx −

∫

|x|<|α|2Na

ψ−1(x)δ−1/2(x)σ−1(x) dx .

The first integral is Tate’s factor γ(σ−1, ψ−1). Since ψ is trivial near the origin, if |α| is near 0 then the second is
also ∫

|x|<|α|2Na

δ−1/2(x)σ−1(x) dx

which is the same as ∫

|x|≥|α|2Na

δ−1/2(x)σ−1(x) dx .

This is a very natural transformation, as is explained in a recent paper ofminewith a title something like ‘Extended

automorphic forms’ in theMath. Annalen. Of course it can be verified explicitly. And this is equal to

δ1/2(α)σ−1(α)

∫

N

f(wn) dn .

So the final formula is that for a near 1we have

〈Ra,Ωψ〉 = δ1/2(α)
[
σ(α)γ(σ−1, ψ−1) + σ−1(α)〈f,ΛN 〉

]
.

Of course in some sense you already know this formula. What I like about the derivation is that it makes clear

how Tate’s factor appears, without making assumptions on σ first.

In the next letter I will do the same for SU(3). This is what I have spent a lot of time on. Again it will give a
result you are familiar with, but dealing with all characters at once, as opposed to the technique of you and Keys.

By the way, I amwriting these as rapidly as I can. I don’t think there are any serious mistakes, but if the argument

atr any point seems incorrect or confusing, please let me know immediately rather than waste your time.



5. Letter

Dear Freydoon,

In this note I shall showwhat happens forSU(3). Of course once again the calculations will be somewhat familiar
to you from the work of Keys and yourself. But I hope that they are somewhat more direct than those you are
familiar with. The point once again is that I hope to introduce the Tate factors and the number λ(E/F, ψ) in as
direct a fashion as possible.

[Note: I realized just after doing this that my factors and Tate’s differ slightly. I write

γ(χ, ψ) =

∫
χ(x)ψ(−x) dx

where Tate defines it as ∫
χ(y)ψ(−x) dx/|x| .

This shift shouldn’t cause too much trouble.]

So let now E/F be a quadratic extension, and H the Hermitian matrix




0 0 1
0 γ 0
1 0 0





with γ in F , and G the group SU(H).

Then

w =




0 0 1
0 −1 0
1 0 0





M =









α 0 0
0 α/α 0
0 0 1/α










N =









1 −γx y
0 1 x
0 0 1




∣∣∣∣∣Trace(y) = −γNorm(x)






Now

〈Raϕ,Ω〉 =

∫

N

ψ−1(n)ϕ(wna) dn .

If

n =




1 −γx y
0 1 x
0 0 1





a =




α 0 0
0 α/α 0
0 0 1/α







then
δ(a) = |α2/α|E |αα|F

= |α|2E

δ1/2(a) = |α|E

wn =




0 0 1
0 −1 −x
1 −γx y





=




1 γx/y 1/y
0 1 −x/y
0 0 1








1/y 0 0
0 y/y 0
0 0 y








1 0 0
x/y 1 0
1/y −γx/y 1





wna =




1 γx/y 1/y
0 1 −x/y
0 0 1








α/y 0 0
0 αy/αy 0
0 0 y/α








1 0 0

(α2/α)x/y 1 0
αα/y −γ(α2/α)x/y 1





If ϕ is defined as for SL2 by the condition that y ∈ a, then similar calculations show that for |α| small and T large
we have

〈Raϕ,Ω〉 =

∫

N

ψ−1(n)ϕ(wna) dn

= δ1/2(a)
(
σ(a)Γ + σ−1(a)〈ϕ,ΛN 〉

)

where

Γ =

∫

|y|≤T

ψ−1(x) |y|−1
E σ−1(y) dn .

It is this factor Γ that we are interested in. It is trickier to calculate than the easy one for SL2(F ). Note that there
is no real dependence on T , so I can write it formally as

Γ =

∫

N

ψ−1(x) |y|−1
E σ−1(y) dn .

Formally this can be written as

Γ = 〈Φ,Ωψ〉

=

∫

N

ψ−1(n)Φ(wn) dn

where
Φ(nan) = δ1/2(a)σ(a)

and it is perhaps useful to know that this expression for Γ is in fact valid in all circumstances — for any group
whatsoever, and for any induced representation. Note that

Φ = lim
a→0

Raϕ

in some sense. I am not going to worry about convergence questions in the rest of this note, but I’m pretty
sure everything can be justified — either by considering functions as distributions, or applying the tricks of

my Annalen article. I think it is important to realize that these formal integrals are perfectly OK to work with
directly, because it simplifies life a lot, and certainly makes arguments clearer. In a sense, the rest of this note will

recover Keys’ lengthy calculations by these formal tricks, and therefore, I hope, showing that they should be in

everybody’s toolkit.

Let
χ(y) = |y|−1

E σ−1(y)



so that, considering the way integration overN works, we want to calculate

∫

N

ψ−1(x) dx

∫

Trace(y)=−γxx

χ(y) dy .

Let

F (c) =

∫

Trace(y)=c

χ(y) dy

for c in F .

We can calculate this by Fourier duality. It is the same as

=

∫

F

ψF (λc) dλ

∫

E

χ(y)ψE(−λy) dy

= γE(χ, ψE)

∫

F

ψF (cλ)|λ|−1
E χ−1(λ) dλ

= χ) − 1)γE(χ, ψE)γF (|•|−2
F χ−1|F×, ψF )|c|Fχ(c)

which makes our original integral into

= 〈constant〉χ(−γ)|γ|

∫

E

ψ(−x)|xx|χ(xx) dx

= λ(E/F, ψ)−1χ(γ)|γ|γE(χ, ψ)γF (|•|Fχ, ψ)γF (|•|FχsgnE , ψ)γF (|•|−2
F χ−1, ψ)

= χ(γ)λ(E/F, ψ)−1γE(χ, ψ)γF (|•|F (χ|F×) sgnE , ψF ) .

which differs somehow from what you and Keys have! Oops! But you can see the idea, I hope.

In the next and, for the moment, last note I just give a direct proof of Hasse’s product formula.



6. Letter

Dear Shahidi,

In these notes I will tidy up a few items, and give a self­contained account of Hasse’s formula, which I needed in

the last notes.

Suppose V to be a vector space over F ,Q a non­degenerate anisotropic quadratic form on V , so thatQ(x+ y)−
Q(x) −Q(y) is a non­degenerate bilinear symmetric pairing.

For y in F , let µ(y) dy be the volume of Q−1(y) dy, so that we have the volume formula

∫

V

f(Q(x)) dx =

∫

F

f(y)µ(y) dy

for all suitable functions f on F . The function µ vanishes identically in the neighbourhood of y unless y lies in
the image of Q. On the image, it scales to some extent.

Even if Q(x) is isotropic, these definitions can be construed in terms of distributions — the distribution µ is
characterized by

〈f, µ〉 =

∫

V

f(Q(x)) dx .

I will not need that generalization here.

Lemma. For any α in (F×)2

µ(αy) = |α|
(n−2)/2
F µ(y) .

We have by definition ∫

V

f(Q(x)) dx =

∫

F

f(y)µ(y) dy

But then ∫

V

f(α2Q(x)) dx =

∫

V

f(Q(αx)) dx

= |α|−nF

∫

V

f(Q(u)) du (u = αx, dx = |α|−nF du)

=

∫

F

f(α2y)µ(y) dy

= |α|−2
F

∫

F

f(u)µ(α−2u) du

µ(α−2u) = |α|−n+2
F

µ(αu) = |α|
(n−2)/2
F

Let γQ be the Fourier transform of µ. Thus

γQ,ψ(λ) =

∫

F

ψ(−λy)µ(y) dy

=

∫

V

ψ(−λQ(x)) dx .

It follows from the quasi­homogeneity that this integral is conditionally convergent for all λ 6= 0. Weil’s
formulation is that

lim
R→∞

∫

‖v‖≤R

ψ(−λQ(x)) dx



exists for all λ 6= 0. This is valid for any local field, as indeed is my formulation.

Suppose now that E is a quadratic extension of F , V = E, Q(x) = xx. The same argument as above shows that
µ(αy) = µ(y) if α lies in the subgroupNorm(E×) of index two in F×. Therefore

µE/F (y) = (1 + sgnE(y))

for all y in F×, if the measures on E and F are compatible. (Here and everywhere I am probably hopeless in
getting things correct to more than some positive constant.)

Then γQ,ψ is the Fourier transform of this sum, which is a δ function plus γ(sgnE , ψ) |λ|−1sgnE(λ), according to
Tate’s thesis. If λ = 1, this is also Langlands’ factor λ(E/F, ψ).

Explicitly: ∫

E

ψF (−λxx) dx = λ(E/F, ψ)|λ|−1sgnE(λ) .

Suppose χ to be a character of F×. Recall that according to Tate

γ(χχ, ψE) =

∫

E

ψE(−x)χ(xx) dx .

A formula due to Hasse if not to Gauss relates this to γ­factors for F . We rewrite the integral as

γ(χχ, ψE) =

∫

F

χ(y) dy

∫

Norm(x)=y

ψE(−x) dx

and represent χ by Fourier duality

χ(y) =

∫

F

χ̂(λ)ψ(λy) dλ

to get

γ(χχ, ψ) =

∫

F,F

χ̂(λ) dy ψ(λy) dλ

∫

Norm(x)=y

ψE(−x) dx

=

∫

F,E

χ̂(λ)ψF (−x− x)ψ(λxx) dx dλ .

But

ψ(λxx − x− x) = ψ(−1/λ)ψ(λ(x − 1/λ)(x− 1/λ))

and

χ̂(λ) = γ(χ, ψ) |λ|−1χ−1(λ)

so this becomes

= γ(χ, ψ)

∫

F

|λ|−1χ−1(λ)ψ(−1/λ)dλ

∫

E

ψ(λxx) dx

= γ(χ, ψ)λ(E/F, ψ)sgnE/F (−1)

∫

F

χ(κ)sgnE(κ)ψ(−κ) dκ (κ = 1/λ)

= γ(χ, ψ)λ(E/F, ψ)sgnE/F (−1)γ(χ sgnE , ψ)

which is a variant of Hasse’s formula.

Actually I am not sure if my λ(E/F, ψ) agrees with yours. It seems not to! Maybe you can correct what I have.


