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Part I. Euclidean space
A homework exercise
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Find the Fourier transform �� ��� � of the characteristic
function � of a triangle with vertices at ,	 , .

A

B
C

Your answer should make manifest the inherent sym-
metry of the problem. Check it by verifying that eval-
uation at � 
 � gives the area of the triangle.
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Truncation for convex polyhedra
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Let be a closed convex polyhedron, � 
 � .

� If � is a face of codimension one
of , let ��� � be the open exterior
half-plane bounded by � .
� If � is any other proper face

�� � 

� � � � ��

�� � �

� If � 
 let �� � 
 .
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If � � � , replace it by its product with the vector
space perpendicular to it in these definitions.
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Let ��� � be the characteristic function of � � � .

The following theorem is due to Ishida for cones,
Brion and Vergne for nondegenerate bounded poly-
hedra. The result for arbitrary convex polyhedra
seems to be new, even in two dimensions.

Theorem C. We have

� ��
 "! # $%& '() � �*� � + , -/. 0� 1

Minkowski or Weyl might have discovered it.
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A few simple cases:
2 Coordinate octant

or simplicial cone

+1 − 1

+1 − 1

+1 − 1 + 1 − 1

2 Simplex
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Another formulation:

For any 3 in
4 56 78

9 : ; <=> ?@A B C ; 3 D

E otherwise.

This suggests that cohomological Euler-Poincaré
characteristics are going to play a role:

B FHG
9 : ; <= > ?@A B C

I
J

9 : ; < ?@ A G if is closed and bounded

E if is a closed cone

; if is open

The first two are equivalent, since a suitable slice
through a cone is a bounded polyhedron.
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Two faces are allowed to have the same affine sup-
port. In effect, the Theorem is about a cell decompo-
sition of compatible with its convex structure. If a
number of faces K L partition an open geometric face

KNM , their total contribution is just
O P Q OSR

T"U V WXY Z[\ O P ]_^ O Pa` ]_^ O

since all ] ^ O P ` ]b^ O here and the Euler-Poincaré
characteristic of the open face is V .
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What’s going on?
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B
ounded

polyhedra
follow

ing
Brion

&
Vergne
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We want to prove that for any point c

d ef gh
i j k lmn opq r s k c t

u otherwise

If c is a point of this
is immediate. If c is not
in , let be the convex
hull of and c .

P

C
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Then is the union of all segments

vxw y z with in , and { is the
union of all v y w | with in { .

Proposition. If } is a face of then

} ~ { if and only if w � �b� � .

P

F

C

Corollary. A face } of is one of
the cells in the boundary of if
and only if w �� ��� � .

P

C
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� ���
�"� � ��� ��� � � �� � � � �"� � � ��� �

� ��� ��� � �
�"� � ��� ��� � � �� � cone � � �

� ��� ��� �� �
�"� � ��� ��� � �

� � � ��� ��� ��
�"� � ��� ��� � � �"� � � �� � �

� � �
�"� � ��� ��� � � �� � � � �"� � � ��� �

� �� ��
�"� � ��� ��� � � � � � � �
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Cones
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The formula for cones reduces to that for bounded
convex sets by taking slices.

Above the slice, the two configurations are the same.
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A local version
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For each face � of , let  ¡ be the set of points in
for which the point of nearest to it lies in �N¢ .

F

V
C

F It possesses an obvious
product structure �¢ £ ¤  ¡ .
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For each couple of faces ¥ ¦ § ¥ let

¨_© ª « ª ¬a­ ¨_© ª ® ªª ¬°¯

P

Q

F

E
C
F,P

E
C
F,F

E
C
F,Q

Thus a point ± of ¨ © ª lies
in ¨�© ª « ª ¬ if and only if the
point of ¥ closest to it
lies in ¥ ¦ .
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Theorem L. For each face ² ³ of
´ µ ´ ¶ · ´

¸ ¹ º »¼½ ¾¿À ´ Á*Â ´ Ã ´ ¶ÅÄ

Æ ² ³ Ä

Ç Â ² ³ Ä

This is one variation of Langlands’ combinatorial
lemma.
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L in two dimensions is covered by these images È È È

E
C
P,P

P

C F0

F1

− E
C
F1,P

P

C F0

F1

−

E
C
F0,P

P

C F0

F1

+
E

C
C,P

P

C F0

F1
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É É É whose secret is given away by these:

−

−

+
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C for cones implies L.

Theorem L asserts that
Ê Ë Ê Ì Í Ê

Î Ï Ð ÑÒÓ ÔÕÖ Ê ×*Ø Ê Ù Ê ÌÅÚ

Û Ü ÝÚ

Þ Ø Ü ÝÚ

In this, may be replaced by its tangent cone at Ü Ý .
At any face but a vertex, the tangent cone at that
face has a simple product structure, and induction
proves the claim. The formula for the full cone can
be rearranged to give it for the vertex.
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Conclusion of the proof of C
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C follows from L by introducing the partition

ß*à á â
á ã ä á

ß*à á å á ã

and then rearranging the sum:

á
æ"ç è éêë ìíî á ß*à á â

á å á ã ï á ã ä á
æ"ç è éêë ì íî á ß*à á å á ã

â
á ã á ï á ã ä á

æ"ç è éêë ì íî á ßà á å á ã

â ð à ñ
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Langlands’ combinatorial lemma
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If ò is a face of , let ó�ô õ be the translation of ô õ

by the support of ò , and öô õ its characteristic func-
tion. Thus ô õ ÷ óô õ ø òNù . When is an obtuse
simplicial cone the following result is the same as
the original combinatorial lemma of Langlands.

Theorem. For any face ò of

õ ú õ û úô
ü"ý þ ÿ� � �� � õ öô õ û�� õ ûõ ÷ þ if ò ÷

� otherwise
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The case � 	 is trivial. The proof for other �

uses the partition of into the 
� , and goes by in-
duction.

The original applied to simplicial cones and was
announced by Langlands without proof in his 1965
Boulder talk on Eisenstein series, and a result ap-
parently equivalent to this one is contained in the
appendices to a recent paper by Goresky et al.
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Fourier analysis
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One curious application of the result of Brion and
Vergne is a useful formula for the Fourier transform
of the characteristic function of a bounded convex
polyhdron with � 
 � . This is the entire function
of the complex variable �

��� � � � 

� �� ��� ��� � ��  

and the formula asserts that

��� � � � 
 �"! # �$% & �
'

�(� ' � � �

where the right hand sum is over the vertices of ,
and the expression is taken to be the analytic contin-
uation of the obvious integral.
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Applying the fundamental theorem again to the exte-
rior cones, this can be rewritten

)*+ ,.- /10 2
)3 + 2 ,.- /

where 3 is the characteristic function of the interiors
(tangent cones) of the vertices.

These integrals are easy to compute when the cones
are simplicial, but as far as I know there is no simple
formula otherwise.
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The ‘formal’ Fourier transform (i.e. Laplace trans-
form) of the cone with vertex and whose edges
pass through and 4 is

56 7.8 9 : ;.< 8 < :>= ?@ A Jacobian

B
C

B
C DE F�G H I J< K

= LNM triangle areaM DPO

7.Q R S ; 7.T R S ; 9

where Q = U.V 9 W etc.

A B

C
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For the case of a triangle with vertices ,X , this
is the product of twice the area of the triangle with

Y[Z

\.] ^ _ ` \.a ^ _ `b

Y[c

\.] ^ a ` \ _ ^ a `b

Y[d

\.a ^ ] ` \ _ ^ ] `e

where ] f g.h e i f h jlk m b h npo m , etc. Why in heck
is this equal to the area at h f q ? Why is it even an
entire function?
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Part II. Arithmetic quotients

rs t
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To start
u v wx y z|{ }

v upper half plane

~ v Borel subgroup of upper triangular matrices

v unipotent matrices in ~
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y = Y

Γ ∩ P\HY ↪→ Γ\H (Y ≥ 1)Γ ∩ P\HY ↪→ Γ\H (Y ≥ 1)
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Thus for � � � the quotient � �� � � may be iden-
tified with a subset of � � . We have the map

� �� � � � � ��� ��� �|� ��� � �� ��� � � ���

If � � is the characteristic function of the region ���

� truncation at � is the operator
� �   �   � � �   ¡

where

  ¡ � � ��

¢
¡   � � � � � �.£ �

is the constant term of   .
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The quotient ¤ ¥ may be compactified by adding a
cusp at infinity, and truncation chops away the con-
stant term of a function in the neighbourhood of the
cusp.

As a ¤ -invariant function
on

¦¨§ © ª.« ¬1­ © ª.« ¬

®
¯ °± ² ¯

³ ª´ ¬ © µ ª´ ª¶ « ¬ ¬·
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The most important property of ¸º¹ is that under a
mild growth condition on » its truncation ¸ ¹ » is
rapidly decreasing at ¼ .

It is for this reason that truncation plays a role in the
meromorphic continuation of Eisenstein series and
in proving the Selberg trace formula.

In particular, if ½ ¾ is the Eisenstein series of Maass
then ¸¹ ½ ¾ is square-integrable, and the Maass-
Selberg formula for ¿ ¸¹ ½ ¾ ¿À is important in proving
properties of ½ ¾ .
All of these features occur in using the truncation
operator for groups of higher rank as well.
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The Maass-Selberg formula:
Á|Â¨Ã Ä Å Æ ÄÇ È É1Ê Á|Â¨Ã Ä Å Æ ÄÇ È É

Ê
Ã

Ë Ì const. term of Ä Å Í Ì const. term of Ä Ç È ÍÎ Ï
ÏÑÐ

Ê
Ã

Ë Ò Ï Å ÓÔ Ì.Õ Í ÏÖ Ç Å × Ò ÏÇ È Ó Ô Ì"Ø Ù Í ÏÖ Ú È ×
Î Û Î Ï

Ï Ð
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Groups of higher rank
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Suppose now for simplicity that is a split group
over ,Ü Ý Þ|ß à , Ý á . Under these condi-
tions, all Borel subgroups areÜ -conjugate.

Fix one, call it â ã . Let ä be the corresponding set of
roots, the basic roots.

For any rational parabolic subgroup â let å be its
unipotent radical, å Ý â á å , å the connected
component of the centre of å .

Given the compact subgroup of , for any parabolic
subgroup of there exists a unique copy of å in

â stable under the Cartan involution determined by
.
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Parabolic subgroups containing æ ç are parametrized
by subsets è .

For èlé

ê è ë è ë è ê

Every rational parabolic subgroup is ì -conjugate to
exactly one of these.
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For any rational parabolic subgroup í and î on
ï ð the constant term of î with respect to í is

î ñ ò.ó ô1õ ö ÷ø ù úø ùû ò.ü ó ô.ý ü þ

a function on ñ ò ï ÿ í ô ð .

Conversely, for î on ñ ò ï ÿ í ô ð define (formally)
the Eisenstein series

ò�� �ñ î ô ò.ó ô õ
ö ÷ ñ ú ö

î ò� ó ô��
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In � lie two naturally defined cones, one obtuse
and one acute. Let � � be the characteristic function
of the obtuse one, � � that of the acute one.

τP χP
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There is a canonical projection
� 	�
 �� 
� � � 	�
 �� 
��� � �� � � ���

Let � � , � � be also their lifts back to , � � �� and

� � �� their shifts by � in� .

Fix � in the positive Weyl chamber in � far away
from the walls. Arthur’s definition of truncation is
this:

��� �! �
� 	 � " 
#$% & ')( #$% & * + �� 	 � � �� , � 


The sum evaluated at any given element is finite.
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-�. /!0 1
23

4 5 6789 : ;)< 789 : = > /23 ? 2 @. A0 2 6

If you are familiar with the geometry of B C you will
likely find this definition puzzling, because there is
no longer any obvious relationship between trunca-
tion and the geometry of a compactification of .
For groups of rational rank greater than one, Arthur’s
truncation is not local on any Satake compactification.
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Nonetheless, there is no doubt that Arthur’s defini-
tion is the correct one. It is again true, but not so
simple to prove, that under a mild growth condition
on D the truncation EGF D is rapidly decreasing at
infinity.

Truncation is a projection operator, too.

It does not affect functions whose constant term
support lies inside a well defined compact subset
of H I . In particular it does not affect cusp forms.
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Truncation is defined on every J as well as it-
self. There is an equivalent recursive definition of
truncation that defines it for in terms of truncation
on the other J .

Theorem. We have an orthogonal decomposition

KML

J
NPO J QSR J TVU W X U Y Z K J [�\

This is proven by means of a purely geometric lemma
about obtuse simplicial cones, originally due to Lang-
lands.
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The rest of this talk will try to explain why the defini-
tion of truncation is reasonable, and why this theo-
rem holds. Without, however, proving either of them!
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A simple model for Eisenstein series
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When trying to understand Arthur’s calculations, I
find it helpful to see what’s going on in a much sim-
pler situation, one where combinatorial difficulties
are isolated from analytical ones.
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Suppose given a split algebraic torus and a root
system ] associated to it.

Let be the algebraic group generated by the torus
and the Weyl group of ] . In some sense, this is
a reductive group in which the unipotent groups are
reduced to shadows.

The parabolic subgroups in this scheme are parametrized
by the faces of Weyl chambers.

Given a face ^ , the associated group of rational
points is the subgroup generated by the torus and
the subgroup _ of whose elements fix the points
on the face.
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The group ` is just .

The space may be identified with the quotient of
by its torsion subgroup, which I will identify with

the vector space in which the (co)roots live.

Automorphic functions are the characters of that
are -invariant, and the analogue of an Eisenstein
series is the finite sum

a�b cdfe g aSh gji
k l m k

e aSn h g
that maps a function in k l to one in k .
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The natural definition of truncation associated to a
point o in is multiplication of a function p by the
characteristic function of the convex hull of o .

T

CT

If o is non-singular,
then the faces of
its convex hull q r

are parametrized by
the ‘parabolic sub-
groups’.
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The orthogonal decomposition is that corresponding
to the partition of according to the nearest face of
the convex set s t .
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That this agrees with Arthur’s definition is not obvi-
ous.

The agreement of the two definitions is a actually a
special case of a much more general result about
convex polyhedra.
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Back to Arthur’s truncation
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Arthur’s truncation is, as I believe I have worked
out this week, a generalization of this theory to the
building of the rational group .

65



References

66



J. Arthur, A trace formula for reductive groups I.
Terms associated to classes in uv , Duke Math-
ematics Journal 45 (1978), 911–952.

, A trace formula for reductive groups II.
Applications of a truncation operator, Compositio
Mathematica 40 (1980), 87–121.

M. Brion and M. Vergne, Lattice points in simple
polytopes, Journal of the American Mathematical So-
ciety 10 (1997), 371–392.

M. Goresky, R. Kottwitz, and R. MacPherson, Dis-
crete series characters and the Lefschetz formula
for Hecke operators, Duke Mathematics Journal 89

67



(1997), 477–554. Appendix B is the first place I am
aware of where Langlands’ combinatorial lemma is
formulated for general cones.

M. N. Ishida, Polyhedral Laurent series and Brion’s
inequalities, International Journal of Mathematics 1
(1990), 251–265.

J-P. Labesse, La formules de trace d’Arthur-Selberg,
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