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Part |. Euclidean space
A homework exercise



Find the Fourier transform X (s) of the characteristic
function y of a triangle with vertices at A, B, C.

A

Your answer should make manifest the inherent sym-
metry of the problem. Check it by verifying that eval-
uation at s = 0 gives the area of the triangle.



Truncation for convex polyhedra



Let C be a closed convex polyhedron, C° # (.

If ' is a face of codimension one
of C, let ES be the open exterior
half-plane bounded by F..

If /' is any other proper face

f F=Clet E¢ =V.



If C° = (), replace it by its product with the vector
space perpendicular to it in these definitions.




Let £5 be the characteristic function of F¢.

The following theorem is due to Ishida for cones,
Brion and Vergne for nondegenerate bounded poly-
hedra. The result for arbitrary convex polyhedra
seems to be new, even in two dimensions.

Theorem C. We have

D (—1)etm el = charg .

F<C

Minkowski or Weyl might have discovered it.



A few simple cases:

Coordinate octant
or simplicial cone

Simplex



Another formulation:

For any P inV
Z (_1)codimF :{ 1 PeC

0 otherwise.
PeEg

This suggests that cohomological Euler-Poincare
characteristics are going to play a role:

(—=1)4mC jf C is closed and bounded
Z (=1)codimE — 2 if C' is a closed cone
FXC 1 if C' is open

The first two are equivalent, since a suitable slice
through a cone is a bounded polyhedron.






Two faces are allowed to have the same affine sup-
port. In effect, the Theorem is about a cell decompo-
sition of C' compatible with its convex structure. If a
number of faces F, partition an open geometric face
F°, their total contribution is just

Z (—1)C0dimF*Eg* _ Eg
F,CF?®°

since all EY = E$ here and the Euler-Poincareé
characteristic of the open face is 1.

m—




What’s going on?



Bounded polyhedra
following Brion & Vergne



We want to prove that for any point P

Z (_1)codimF :{ 1 PedC

0 otherwise

PeEg

If P is a point of (' this
is immediate. If P is not

in C, let H be the convex
hull of C' and P.




Then H is the union of all segments
[P, Q] with @ in C, and H° is the
union of all (), P) with () in C°.

Proposition. If I' is a face of C then
F C H° if and only if P € ES.

Corollary. A face F' of ' is one of
the cells in the boundary of H if
and only if P ¢ E¢.




(_1)codimF _ EP(H) _ (_1)dimC

F<H
Y (1«4 F = EP(cone) =0
F<H,PEF
Z (_1)codimF _ Z (_1)codimF _ (_1)dimC’
F<H,P¢F F<C,P¢ES$
Z (_1)codimF _ EP(C) _ (_1)dimC
F=C

Yo (—nedmF =9 QE.D.

PeEg



Cones



The formula for cones reduces to that for bounded
convex sets by taking slices.

Above the slice, the two configurations are the same.



A local version



For each face I’ of C, let VS be the set of points in
V' for which the point of C' nearest to it lies in F'°.

It possesses an obvious
product structure F° xT§.




For each couple of faces I, < F' let

Thus a point v of E¢ lies
in Ef . if and only if the
point of /' closest to it
lies in F...




Theorem L. For each face F, of

codim F' oC _ 0 Fi #C
Z (_1) gF,F* _ {X F,=C

C
F|F,<F

This is one variation of Langlands’ combinatorial
lemma.



L in two dimensions is covered by these images ...




...whose secret is given away by these:

-
v »




C for cones implies L.

Theorem L asserts that

codim F ¢C  _ 0 F,#C
Z (_1) 5F,F* i { F,=C

F|F.,<F XC

In this, C' may be replaced by its tangent cone at F..
At any face but a vertex, the tangent cone at that
face has a simple product structure, and induction
proves the claim. The formula for the full cone can
be rearranged to give it for the vertex.



Conclusion of the proof of C



C follows from L by introducing the partition

EF =Y Eqnp

F.<F

and then rearranging the sum:

Z(_l)codimFgg _ Z (_1)codimF gg‘,F*

F F,F,|F.<F

Z Z (_1)codimFggF*

F. F|F,<F






Langlands’ combinatorial lemma



If I is a face of C, let TS be the translation of V¥
by the support of I, and & its characteristic func-
tion. Thus V& = TS x F°. When C is an obtuse

simplicial cone the following result is the same as

the original combinatorial lemma of Langlands.

Theorem. For any face F' of C

Z (_1)codimFTgkgg* _

F<F.=<C

{ 1 ifF=C

0 otherwise



The case ' = (' is trivial. The proof for other F
uses the partition of 1 into the V5, and goes by in-
duction.

The original applied to simplicial cones and was
announced by Langlands without proof in his 1965
Boulder talk on Eisenstein series, and a result ap-
parently equivalent to this one is contained in the
appendices to a recent paper by Goresky et al.



Fourier analysis



One curious application of the result of Brion and
Vergne is a useful formula for the Fourier transform
of the characteristic function of a bounded convex
polyhdron C with C° £ (). This is the entire function
of the complex variable s

Lo(s) = / e (57) iy
C
and the formula asserts that

Xo(s) = (=1 Y " ER(s)

where the right hand sum is over the vertices of (),
and the expression is taken to be the analytic contin-
uation of the obvious integral.



Applying the fundamental theorem again to the exte-
rior cones, this can be rewritten

~ =C
Xc(s) = Ig(s)
P
where 7 is the characteristic function of the interiors

(tangent cones) of the vertices.

These Integrals are easy to compute when the cones
are simplicial, but as far as | know there is no simple
formula otherwise.



The ‘formal’ Fourier transform (i.e. Laplace trans-
form) of the cone with vertex (' and whose edges
pass through A and B is

/Xc(ﬂf, y) dx dy = det Jacobian/ / e~ {5 dn
0o Jo
2 -triangle area - e°

(@ b—c

where a = (s, A) etc.




For the case of a triangle with vertices A, B, C this
is the product of twice the area A of the triangle with
e’ el e

@—c)b—0)  (@—b(c—b)  b-alc—a)

a

where a = (s, A) = s,z + s,ya, etc. Why in heck
is this equal to the area at s = 0? Why is it even an
entire function?



Part Il. Arithmetic quotients
SLo



To start

[' = SLy(Z)

‘H = upper half plane

P = Borel subgroup of upper triangular matrices
N = unipotent matrices in P



FﬂP\Hy<—>F\




Thus for Y > 1 the quotient I' 1 P\4y may be iden-
tified with a subset of I'\ . We have the map

'NP\Hy — (0,0): z=zx+iy+—>y .

If xv Iis the characteristic function of the region y >
Y truncation at Y is the operator

AN F=F—yyF,

where |
Foly) = / F(z + iy) da
0

is the constant term of F.



The quotient I'\’/{ may be compactified by adding a
cusp at infinity, and truncation chops away the con-
stant term of a function in the neighbourhood of the
cusp.

As a I'-invariant function
on H

AY F(2) = F(2)
- Y xWF(y(v2))

INP\I




The most important property of A” is that under a
mild growth condition on F' its truncation AY F' is
rapidly decreasing at oc.

It is for this reason that truncation plays a role in the
meromorphic continuation of Eisenstein series and
in proving the Selberg trace formula.

In particular, if L/, is the Eisenstein series of Maass
then AY E, is square-integrable, and the Maass-
Selberg formula for |AY E,||? is important in proving
properties of F/;.

All of these features occur in using the truncation
operator for groups of higher rank as well.



The Maass-Selberg formula:

(N Es,E_y) = (A E,, E_y)

Y
d
— / (const. term of E;)(const. term of F/_;) —g
. Y
dx dy

y2

_ /O (" + c(s)y' =) (™t + e(—t)y'+)



Groups of higher rank



Suppose now for simplicity that (& is a split group
over Q, I' = G(Z), X = G/K. Under these condi-
tions, all Borel subgroups are 1'-conjugate.

Fix one, call it /). Let >. be the corresponding set of
roots, A the basic roots.

For any rational parabolic subgroup P let Np be its
unipotent radical, M/p = P/Np, Ap the connected
component of the centre of M p.

Given the compact subgroup K of (&, for any parabolic
subgroup of GG there exists a unique copy of M p in

P stable under the Cartan involution determined by

K.



Parabolic subgroups containing -, are parametrized
by subsets © C A.

For ©® C =

Az C Ag C Mg C M=

S

[1]

Every rational parabolic subgroup is 1'-conjugate to
exactly one of these.



For any rational parabolic subgroup P and /' on
"\ X the constant term of I’ with respect to P is

Fp(z) = / o, Jydn,

a function on Np(I'N P)\ X.

Conversely, for ' on Np(I' N P)\ X define (formally)
the Eisenstein series

(EEF)(z)= ) F(yz).

'NP\T



In Ap lie two naturally defined cones, one obtuse
and one acute. Let x p be the characteristic function
of the obtuse one, 7p that of the acute one.




There is a canonical projection
Np(FﬂP)\X :NP(FHP)\P/KQP%AP .

Let xp, Tp be also their lifts back to X, xp, and
7p,p their shifts by p in P.

Fix T" in the positive Weyl chamber in Aj; far away
from the walls. Arthur’s definition of truncation is
this:

AGF =) (—ndimAr—dimde pE(yp 1 - Fp)
P

The sum evaluated at any given element is finite.



AGF =" (~1ydimAr—dimAs pG(y . )
P

If you are familiar with the geometry of I'\ X you will
likely find this definition puzzling, because there is
no longer any obvious relationship between trunca-
tion and the geometry of a compactification of X.
For groups of rational rank greater than one, Arthur’s
truncation is not local on any Satake compactification.



Nonetheless, there is no doubt that Arthur’s defini-
tion is the correct one. It is again true, but not so
simple to prove, that under a mild growth condition
on I the truncation A’ I is rapidly decreasing at
infinity.

Truncation is a projection operator, too.

It does not affect functions whose constant term
support lies inside a well defined compact subset
of I"\ X. In particular it does not affect cusp forms.



Truncation is defined on every M p as well as G it-
self. There is an equivalent recursive definition of
truncation that defines it for G in terms of truncation
on the other M p.

Theorem. We have an orthogonal decomposition

F =Y Ef(tpr- Ay, Fp).
P

This is proven by means of a purely geometric lemma
about obtuse simplicial cones, originally due to Lang-
lands.



The rest of this talk will try to explain why the defini-
tion of truncation is reasonable, and why this theo-
rem holds. Without, however, proving either of them!



A simple model for Eisenstein series



When trying to understand Arthur’s calculations, |
find it helpful to see what’s going on in a much sim-
pler situation, one where combinatorial difficulties
are isolated from analytical ones.



Suppose given a split algebraic torus A and a root
system >. associated to it.

Let G be the algebraic group generated by the torus
and the Weyl group 11 of >.. In some sense, this is

a reductive group in which the unipotent groups are
reduced to shadows.

The parabolic subgroups in this scheme are parametrized
by the faces of Weyl chambers.

Given a face I, the associated group of rational
points is the subgroup generated by the torus and

the subgroup Wp of W whose elements fix the points
on the face.



The group I' is just V.

The space X may be identified with the quotient of
A by its torsion subgroup, which | will identify with
the vector space 1V in which the (co)roots live.

Automorphic functions are the characters of |V that
are lV-invariant, and the analogue of an Eisenstein
series is the finite sum

(ESF)(v Z F(wv)

that maps a function in V7 to one in V.



The natural definition of truncation associated to a
point 7' in V' is multiplication of a function F' by the
characteristic function of the convex hull of 7.

T

If 7" is non-singular,
then the faces of
its convex hull ¢
are parametrized by
the ‘parabolic sub-
groups’.



The orthogonal decomposition is that corresponding
to the partition of V according to the nearest face of
the convex set €.




That this agrees with Arthur’s definition is not obvi-
ous.

/

The agreement of the two definitions is a actually a
special case of a much more general result about
convex polyhedra.



Back to Arthur’s truncation



Arthur’s truncation is, as | believe | have worked
out this week, a generalization of this theory to the
building of the rational group G.
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