
APPENDIX 7

Importing PostScript files

Very often you want to import one PostScript file into another. The one you want to import will quite possiblyting PostScript files:1

have been produced by another program, and may be a more or less generic PostScript file, so you have to be
prepared for almost anything. You have to encapsulate the imported file so that it does not upset the environment

into which it is imported.

A special case of this is one of the most vexing tasks among all those a professional mathematician encounters,

that of putting high quality TEX labels into a mathematical diagram. The most general task of this nature canlabels:TEX:1

indeed be daunting, but the exact one described here need not be.

I’ll explain what to do by a simple example, then add remarks on fancier or more difficult variations.

1. Labelling a graph

Let’s suppose you have created the graph of a parabola:

72 dup scale

1 72 div setlinewidth

/N 100 def

newpath

/x -1.25 def

/dx 2.5 N div def

x dup dup mul moveto

N {

/x x dx add def

x dup dup mul lineto

} repeat

stroke

and now you want to add a label to it, so it becomes:

y = x2

You could produce your own label in PostScript, but getting the fonts to look right, and getting the spacing right

in mathematical text—for example the superscript in this case—is hard, and better left to some other program. I
have used Donald Knuth’s program TEX here to make up the label, and then dvips, a program written by John

Hobby (once a graduate student of Knuth’s), to produce from the TEX output a PostScript file. I’ll say more about

this process later, even though it is not really a PostScript matter. The important thing is that in the end I get
a file called, say, label.eps which contains the PostScript code to write the text ‘y = x2’. The basic idea is

now simple—to include a line (label.eps) run in the PostScript file containing the parabola. There are two

additional things to do, however: (1) take into account the different coordinate systems in parabola drawing and
in the label file; (2) isolate effects of the program in the label file.

Appendix 7. Importing PostScript files 2

Dealing with the coordinates is simple, at least in normal circumstances. Dealing with the second will usually
involve only annulling the effect of a possible showpage in the imported file, at least if the imported file is as well

behaved as it ought to be. My new file, producing the label and the parabola, now looks like this:

gsave

% ... parabola drawing as listed above ...

grestore

gsave

10 10 translate

-290 -695 translate

save /SavedState exch def

/showpage {} def

(yx2.eps) run

SavedState restore

grestore

You might not have encountered save and restore before. The command save does two things: (i) it puts a
record of the complete current environment on the stack, and (ii) it saves the current graphics state as gsave

does. Thus save /SavedState exch def (why not /SavedState save def?) defines SavedState to be the

current state. The command restore has one argument, a complete state in the format produced by save. The
point of using them here, among other things, is to take care of possible showpage commands in the imported

file, but then bringing back the normal definition of showpage after the file is read. Unless showpage is disabled,
an importing program might try to turn a page after reading each import. This technique is especially important

in versions 8.0 and later of Ghostscript, which seem to add implicitly a showpage command to EPS files it reads,

even if there isn’t one there originally.

Another and perhaps simpler way to turn off showpage is to use a temporary dictionary:

1 dict begin

/showpage {} def

(yx2.eps) run

end

But save ... restore is a more flexible technique. Now all you have to know is where the mysterioussave:2restore:2

numbers 290 and 695 come from. But that’s easy. The file produced by dvips is an encapsulated PostScript fileostScript:encapsulated:2

(or EPS file), which means, among other things, that it contains near the beginning a linebounding box:2

%%BoundingBox: 290 695 321 708

to advertise to applications that want to use it (and that includes us!) what the boundaries of its drawing area—its

bounding box—are. These are the coordinates of the lower left and upper right corners of that box. The image
that TEX and dvips produced, in other words, was intended to be placed on a page as on the left, with the label

sitting inside its bounding box as in the close­up on the right:

Appendix 7. Importing PostScript files 3

y = x2

(290, 695)

(321, 708)

The line -290 -695 translate therefore sets the lower left corner of the imported image at the origin of the

figure it is being imported to. So dealing with different coordinate systems is very simple, actually. All you
need to do is figure out the bounding box of the imported file. The line 10 10 translate placed before the

importation thus has the effect of locating this corner at (10, 10) in the importing file. You might very well want

to do some other transformations to that imported file. Suppose that in addition you want to scale the import in
place, for example: make it

10 10 translate

4 4 scale

-290 -695 translate

Order is important here, as it always is in coordinate changes.

Deciding where to place the imported file may not be straightforward, and usually

requires some fiddling around. Most Ghostscript viewers track the location of the

mouse in default coordinates to help you out in this task. The viewer I use, for
example, records those coordinates—here (12, 307)—in the upper left corner. This

is often extremely useful. In order to take advantage of this feature, you must restore

default coordinates before importing files.

What I have said so far will handle most imports, but sometimes a somewhat more robust technique is required.

The principal new feature is to restore the default graphics environment before importation. Also, messy stack
handling by the imported files has to be allowed for.

/BeginImport {

% save the current state

save /SavedState exch def

% save the sizes of two stacks

count /OpStackSize exch def

/DictStackSize countdictstack def

% turn off showpage

/showpage {} def

% set up default graphics state

0 setgray 0 setlinecap

1 setlinewidth 0 setlinejoin

10 setmiterlimit [] 0 setdash newpath

/languagelevel where

Appendix 7. Importing PostScript files 4

{pop languagelevel 1 ne

{false setstrokeadjust false setoverprint} if

} if

} bind def

/EndImport {

count OpStackSize sub

dup 0 gt { {pop} repeat} {pop} ifelse

countdictstack DictStackSize sub

dup 0 gt { {end} repeat} {pop} ifelse

SavedState restore

} bind def

followed by code like this:

BeginImport

% --- import stuff here

EndImport

2. Importing TEX text

In this section I want to say more specifically about how to import text produced by TEX, although it is not directlyostScript files produced by:4

connected with PostScript. Those not familiar with TEX may skip it. I also restrict myself to plain TEX, since the

unfortunately more popular variant Latex does all kinds of extra formatting I don’t want to deal with.

Generally, you will want to import small fragments of mathematics. The only serious requirement for doing this

correctly is that, at least in plain TEX, you must put the line \nopagenumbers at the start of your file. This means
that there will be no secret writing on your output. Then TEX your file as usual. To produce PostScript output,

you should run dvips on the corresponding .dvi file, but with the -E option:

dvips -E x.dvi -o x.eps

if x.tex is your TEX file. This produces an EPS file with the bounding box data written into it. If you use dvips
without the -E option, you will get a full page with your TEX on it, whereas the -E option will produce a bounding

box just covering the text you want.

There is one problem with this procedure. The file produced will be quite large. For example, the file yx2.eps I

used as an example in the first section was about 17,000 bytes long! The reason is that dvips puts in a number

of header files and font definitions, and they take up space. These can be amalgamated, but I’m not going to say
anything about that here, except to raise the issue. Anyway, in the modern world 17,000 byes is not all that large,

although if you have a lot of labels the redundant code will add up.

If you are using TEX, then you will probably not be able to avoid meeting the PostScript files produced by dvips.

It’s also likely that sooner or later you’ll want to modify one of these by hand, so I’ll say something here about

their structure. In fact, I’ll look at the one responsible for the label ‘y = x2’ dealt with above. It starts off with
something like

%!PS-Adobe-2.0 EPSF-2.0

%%Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software

%%Title: yx2.dvi

%%BoundingBox: 290 695 321 708

%%DocumentFonts: CMMI10 CMR10 CMR7

%%EndComments

Appendix 7. Importing PostScript files 5

%DVIPSWebPage: (www.radicaleye.com)

%DVIPSCommandLine: dvips -o yx2.eps -E yx2.dvi

%DVIPSParameters: dpi=600, compressed

%DVIPSSource: TeX output 2003.03.12:1926

These are all comment lines. The initial one declares that this file conforms to the conventions for documentcomments:document structure:5

structure mentioned in an earlier appendix. It also declares that this is an encapsulated PostScript file. TheEPS:5ostScript:encapsulated:5

comments beginning with %% are part of the document structure (see Appendix 3). Next comes two sections like

this:

%%BeginProcSet: texc.pro

%!

/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S

...

end

%%EndProcSet

%%BeginProcSet: texps.pro

...

%%EndProcSet

This just contains two fragments of PostScript code that were imported by dvips to set up its own dictionaries.
Next comes

%%BeginFont: CMR7

%!PS-AdobeFont-1.1: CMR7 1.0

%%CreationDate: 1991 Aug 20 16:39:21

% Copyright (C) 1997 American Mathematical Society. All Rights Reserved.

...

%%EndFont

which just defines a font to be used. More fonts follow. The structure of fonts is a very specialized part of

PostScript, a world pretty much isolated from the rest of the language. Among other things, font files usually

contain large chunks of almost indecipherable code.fonts:PostScript:5

Finally, the last few lines of the file are

TeXDict begin 40258437 52099154 1000 600 600 (yx2.dvi)

@start /Fa 205[33 50[{}1 58.1154 /CMR7 rf /Fb 194[65

61[{}1 83.022 /CMR10 rf /Fc 134[41 47 120[{}2 83.022

/CMMI10 rf end

%%EndProlog

%%BeginSetup

TeXDict begin

%%EndSetup

1 0 bop 1830 183 a Fc(y)26 b Fb(=)d Fc(x)2032 148 y Fa(2)p

eop

%%Trailer

end

userdict /end-hook known{end-hook}if

%%EOF

This is the real meat of the file. Some abbreviations are defined, and then the actual typesetting is done in the

single line

Appendix 7. Importing PostScript files 6

1 0 bop 1830 183 a Fc(y)26 b Fb(=)d Fc(x)2032 148 y Fa(2)p

This doesn’t make a lot of sense immediately, but actually it’s pretty simple. The program dvips abbreviates font

changes for efficiency, as well as other commonly used PostScript commands. It defines bop to begin pages. So

all that’s going on here is that characters from different fonts are being placed on the page, and the characters
being placed are those in the string ‘y = x2’. As with a modern army at war, then, almost all the effort goes into

logistics!

3. Fancy work

You can in fact apply any 2D transformation to the image produced by any PostScript code—for example that in

a file to be imported—without modifying the code itself, at least in most circumstances. Why would you want

to do this? Well, this is one of those things about which it is said, “If you have to ask . . . ” Any serious book on
mysticism will tell you that the highest levels of experience are not accessible to everyone.Trithemius:J.:6

From In praise of scribes

by Johannes Trithemius, c. 1492
(translation by Roland Behrendt)

The techniques involved here are much less trivial than others in this book. The difficult point here is that you do

not want to examine the internals of the code of the transformed image, except perhaps taking into account its
size, as specified by its bounding box. This means that some of the very basic PostScript drawing commands must
be modified, instead. There are a number of approaches to this problem—the basic choice is whether to modify

the paths in the imported code as they are laid down or as they are drawn. In the first scheme the operators
moveto etc. are redefined, and in the second stroke etc. I’ll choose here the second method. It requires quite a

bit less programming, is slightly more efficient, and is also somewhat more flexible.

There are only a few operators involved in actually realizing a path in PostScript, as opposed to building it. The

obvious ones are stroke, fill, and clip. In addition is the operator show, which essentially fills in the path

made up by a string of characters in whatever the current font is. There are others—principally those concerned
with user paths, which I have not talked about—but I’ll ignore them here. In redefining the drawing operators,user paths:6

it must be kept in mind that the coordinate system may be changed continually in the segment of code to be
transformed. For this reason, a base coordinate system in which the transformation is to be applied must be fixed.

One concern that has to be taken into account is that transforming a path will mean transforming the pieces of
that path, which may be line and curve segments. Doing this assumes that these pieces are small enough that the

transformation is well approximated by an affine transformation on them. This may not be valid for the original

path, so we must allow for path subdivision.

Appendix 7. Importing PostScript files 7

Yet another concern is that we want to be able to escape from our redefinitions, since we might want to keep on
drawing normally after we have drawn the transformed imported file. This will be handled by including the

redefinitions in a special dictionary which can be pushed and popped on and off the dictionary stack with begin

and end.

All these things are handled in a package transform.inc. It has procedures

integer set-sd sets subdivision depth
procedure set-transform defines the transform

PS matrix set-base sets coordinates for the transform to be applied in
subdivide subdivides the current path

path-transform applies the transform at hand to the current path

Just below is the part of the code that manages the final drawing. The file trithemius.eps contains the text

Manuscripts . . . itself, all laid out in a line. The file trithemius2.eps contains the text to be placed inside

the circle, just as is. The bounding box data is taken from the file trithemius.eps, to be used to transform it
correctly.

As for the transform, it knows nothing of the contents of the file it is transforming, and simply wraps a rectangle
around a circle, starting at an angle A0 and ending at an angle A1, which in this case have been chosen at

−90◦ ± 7◦.

% define the base coordinate system

/B matrix currentmatrix def

(transform.inc) run

% --- first the outer text ---

% set up the transform

% the bounding box of the imported file

/llx 81 def

/lly 713 def

/urx 389 def

/ury 719 def

% the dimensions of the box we are displaying

/boxwidth urx llx sub def

/boxheight ury lly sub def

% the angles where the circular text starts and ends

/A0 270 7 sub def

/A1 -90 7 add def

% radius of the circular text

/radius 100 def

% proportion of a full circle the text takes up

/factor A0 A1 sub 360 div def

% the length it will take up on the circle

/truelength factor 3.1416 mul 2 mul radius mul def

% the transform itself

/f { 1 dict begin

/y exch lly sub def

/x exch llx sub def

/T 1 x boxwidth div sub A0 A1 sub mul A1 add def

/R 100 boxheight 2 div sub y truelength boxwidth div mul add def

T cos R mul T sin R mul

end } def

gsave

transformdict begin

Appendix 7. Importing PostScript files 8

/f load set-transform

% set the base coordinate system

B set-base

1 dict begin

/showpage{} def

(trithemius.eps) run

end % the temporary dictionary

end % transformdict

grestore

% --- now the inner text ---

0.92 dup scale

-91 -683 translate

58 98 translate

1 dict begin

/showpage{} def

(trithemius2.eps) run

end

References

1. Adobe Systems, Adobe Type 1 Font Format, 1990. This is the original edition of the definitive document.fonts:type 1:8

Newer versions are available on line.

2. Johannes Trithemius, In Praise of Scribes, translated into English from De Laude Scriptorum by RolandTrithemius:J.:8

Behrendt, Coronado Press, 1974.

