CHAPTER VIII

SECOND FUNDAMENTAL INEQUALITY

Kummer extensions. Let k contain the n-th roots of unity, and let ¢ be a
primitive n-root of unity. A Kummer extension is an extension of k generated by
the roots of ™ — o where « is a non-zero element of k. If one root is denoted ¥/«
then the other roots are ¢ ¥/a, (2 /a, ..., ("t /a. If a and 3 are elements of k*,
then we write a ~,, B if a = (4" for some v € k*. Elements «y,...,a, of k are
independent modulo (k*)™ means ay* ...a% ~, lonlyifa; =--- = a, = 0(mod n).

LEMMA 8.1. Let ng be the smallest positive power of a so that o™ ~, 1. Then
ng divides n. There is an element aq so that o = ag, where n = nod, and k (/o) =

ke ry/as).

Proor. The set of integers a such that a® ~,, 1 is an ideal, so take ng to be the
positive integer which generates the ideal. Since o™ ~,, 1 then n is in the ideal, so
n = nod for some positive integer d. We have a0 = 4™ = y™4 for some v in k*. If
¢ is a primitive n-th root of unity, then

no—l

_,Ynod: H (Q_CZdV)

=0

For some 0 < i < ng, we have a = (¥4 = (Ciy)d, so take ap = (%y. Then
a=aol = ag/no = (/ap)". This show /g is a root of 2™ — a, so k (/) =
)

LEMMA 8.2. Let ng be the smallest positive power of a so that o™ =~, 1. Then
[k (/o) : kK] = ng. For o € G(k(¥/a):k), let (, be the n-root of unity so that
o(/a) = (s (V). Then o — (, defines an isomorphism of G (k ({/«a) : k) onto
the ng-th roots of unity.

PrROOF. (Galois automorphisms will applied on the left when radical notation is
used.) By lemma 8.1, a = o where n = nod, and k (/o) = k ( »¢/ag). We need to
show that x™ — «aq is irreducible over k. The factorization of £ — oy into linear

80
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factors over k ({/«) is

no—1
(8.1) ™ — g = H (z — ¢ /a) .
i=0

Any non-trivial factor of 2™ — o over k would be a product of v linear factors
with 0 < v < ng, and the constant term would be +(j ( ”Q/ozo)y, where ()° = 1.

Since k contains the n-th roots of unity then ( ”Q/ao)y is in k. Let ¢ be the greatest
common divisor of v and ng, and put ¢ = ang + bv. Then

b

("/a0)" = (y/a0)™ ™ = af (("¢/an)")".

Therefore ( ng/ozo)c is in k, and

af — ano(c/no) — ag(c/n()) — (( ne/a_O)C)n7

so a¢ ~, 1. But this is impossible if 0 < ¢ < ng, so we must have v = ng. This
shows that 2™ — « is irreducible over k and [k ({/a) : k] = no.
If o (/) = ¢ (/) then ¢, does not depend on {/a because if (* {/a is another

root of ™ — « then
9 (C{L/a) = Cia (%) = giCO' ({L/a) = CO’ (CZ%) .

Therefore we may take {/a = mp/ag. The map 0 — (, is certainly a homomorphism.
Since [k ({/a) : k] = ng then {/a has ng distinct conjugates over k. This shows that
the image of G(k ({/a) : k) is the group of ng-th roots of unity.

LEMMA 8.3. k (¥/B) C k(¥/a) if and only if 3 ~, o for some v, 0 < v < ng.

PROOF. If 8 = a¥+™ then ({/@)” is an n-th root of 3, so k ({¥/B3) C k(/a).

Conversely, suppose k ({/3) C k({/@). Let a = o so that k (/@) = k ( ¢/ap)
and [k ({/«) : k] = ng. There exist 4, ...,Vn,—1 in k so that

no—1

(8:2) VB="> v (wa).
1=0

Choose o in G(k (Va) : k) so that (, is a primitive ng-th root of unity. Let ¢ be an
n-th root of unity so that o({/3) = ¢ ¥/B3. Applying o to both sides of (8.2) gives

ng—1

<W=Z%@W@%
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or

nog—1

(8:3) VB =3 %¢ i (yan)
1=0

The coefficients in (8.2) and (8.3) must coincide, so if v; # 0 then (71¢? = 1. The
values of the (71¢? = 1 are all different, so 7; cannot be non-zero for two different

value of 7. Therefore
VB = io ( "/0)"

aivd = Vi@’ or B, a' where v = ig satisfies 0 < v < ng.

so we have (3 = ! ag

LEMMA 8.4. FEvery extension of k contained in k(/a) is of the form k(/B)
where 3 = a¥ for some y.

PROOF. Suppose k C K C k({/«a). Let o generate G(k({/«) : k). Let the
subgroup fixing K be generated by o? where = divides ny = [k({/«a) : k|. Let

Y= mg/ag. A typical element of k( {/a) is
no—l
(8.4) Z ¥i (/o)
i=0
Applying 0% to (8.4) yields
ng—1

(8.5) > s (/)
=0

An element is in K if and only if (8.4) and (8.5) coincide, which is equivalent to
v = 7:¢% for 0 < i < ng. Therefore an element of k({/a) is in K if and only if
either v; = 0 or z1 is divisible by ng for 0 <7 < ng. Since x divides ng then v; may
be non-zero only for i = jng/z, 0 < j < x, so elements of K are of the form

x—1
Z’)/]no/xcjno(n Oé JnO/x Z’)/]no/xcjno \/Clc )
7=0

Then K = k(¢/ag). Putting ng = zy then ¢/ag = "¢/af = Vav, so K = k(V/a¥).
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LEMMA 8.5. Suppose that aq,...,q, are independent elements modulo (k*)™.
Then K = k ({L/Oq, ceey :L/ar) has degree n" over k. FEvery cyclic subfield is of the

Ty
ot

form k| /ai' ...« Galois group G(K : k) is canonically isomorphic to the

product of the n-th roots of unity with itself r times, where o € G corresponds to
(Ch---»Cr) 'LfO' ( n\/ai) = CZ (\n/ai)'

PrROOF. The case for » = 1 is established by lemma 8.2 and lemma 8.4. The
general case will be proved by induction. Suppose that the conclusion holds for r—1.

Then [k ( vag, ..., :l/ar) : k] = n"~ !, and every subfield of k ( vag, ..., 1"/0471) is of
the form k ( Yag? .. .ozfr). Let L =k (¢/az, ..., /o) Nk({/a1). Then

By lemma 8.3 we have a3?...af" ~, af"', or a; “"ta3?...af" ~, 1. Since
aq,...,a, are independent modulo (k*)™, we have
—xx1 = Tg = -+ =z, = 0(mod n).

This shows a5?...af" ~, 1, so k ( Yag? .. .af*) = k. By lemma 2.10, we have
[K : k] = n", establishing the first claim. By lemma 2.11, there is an isomorphism

o — (01,0") of Galois groups

Gk (/oq,..., ¢ar) k) ~ Gk(/) k) x G(k(/az,..., Yar) 1 k).

By lemma 8.2, G(k (W) : k) is isomorphic to the group of n-th roots of unity
with o1 — (7 if 0 ((L/a_l) =0 ((l/oz_l) By the induction hypothesis, Galois group
G(k ((L/O_/_Q, ceey {L/a_,n) : k) is isomorphic to the product of » — 1 copies of the n-th
roots of unity with o’ — ({,...,¢(,) if o’ ({L/a_z) = (; ({L/a_z) The composite map
o — ((1,C2,...,¢) is an isomorphism between G(k (Va_l, - {l/a_r) : k) and the
product of r copies of the n-th roots of unity.

It remains to prove the claim about cyclic subfields. Suppose that k C L C
k (v/ar,..., ¢/a,) and G(L : k) is cyclic. Let 7 generate G(L : k). Choose ¢ to
be some primitive n-th root of unity. For each ¢ = 1,...,r, let o; be the element
of G(k ({L/oz_l, cee {l/oz_T) : k) corresponding to (1,...,(,...,1). Every element of
G(k ((L/oz_l, cee Q/a_,n) : k) is of the form [];_, o7*. Let the restriction of o; to L be
7% . Then [[;_, 07" leaves elements of L fixed if and only if []/_, 7% =1, or

(8.6) inyi = 0(mod m) where m = [L: k].

=1
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Every element « of k ({L/ozl, ceey {L/Ozr) may be uniquely represented as

(5.7) o= S e (VD ()
ki1=1 kr.=1

The result of applying o = [[;_, 07" to a is

n—1 n—1

ola) = Z e Z G L L a1>k1 3 '(W)kr .

ki=1 kr-=1

Then a is in L if and only if v, g = 76k CHFF 0k for all (4., )
satisfying (8.6), which is equivalent to

either v, .k, =0, or leyl = 0(mod m) = Zyik‘i = 0(mod n).
i=1 i=1

Therefore elements of L have the form

(8.8) o= Z Vier .. ker (3 Ofl)kl . -((L/Of_r)kr

(k17"'7k7")€s

where

S = {(kl,...,kr) Zwiyi = 0(mod m) = Zyiki = 0(mod n)}

i=1 =1

Since G(L : k) is cyclic of order m and G[K : k] is the product of r copies of
cyclic groups of order n, it follows that m must divide n. Let md = n. Since
>oi_q xiy; = 0(mod m) if and only if !, dz;y; = 0(mod n), the condition for set
S is

i=1 =1

S = {(lﬁ, ooy k) Zr:daciyi = 0(mod n) = iyiki = 0(mod n)} .

We claim that if (ki,...,k.) is in S then there is an integer a so that k; =
adz;(mod n) for 1 <i < n. Assuming this for the moment, then for (ki,...,k,) in
S we have

R/an)™ (et = ((van™ . (/a)™ ) ol atr

a
d dz, b
:(nalxl...aﬁ) ol abr,
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We therefore have

LCk(n ozi‘]’wl...ozfi{w*>.

Note that (dzq,...,dz,) is in the set S, so a = { a‘f“ ...a® is an element of L,

L:k(” ailxl...ozfnl“>.

We still need to establish the claim about the existence of integer a, which is estab-
lished by the following lemma.

and we have

LEmMMA 8.6. If (dxy,...,dz,) and (k1,...,k,) satisfy the condition

deiyi = 0(mod n) = Zyiki = 0(mod n),
=1

= =1

then there exists an integer a so that k; = adz;(mod n) for 1 <i <r.

ProOOF. The proof is by induction. Take r = 1. The hypothesis is that given dz;
and ky, if dz1y; = 0(mod n) then y1 k1 = 0(mod n). Let ¢ be the greatest common
divisor of dz; and n. Then (n/c)dx; = 0(mod n), so (n/c)k; = 0(mod n). Therefore
¢ divides k. Since dxi/c and n/c are relatively prime, then dz;/c has an inverse
modulo n/c, so there exists an integer a such that a(dzy/c) = (ki /c)(mod n/c), or
adzy = k1 (mod n).

Suppose that the lemma holds for the case r—1. If (dzo, ..., dx,) and (Kb, ..., k)
satisfy the condition that if Y., dz;y; = 0(mod n) implies Y ., y;k; = 0(mod n),
then there exists an integer as so that k = asdz;(mod n) for 2 < i < r. Now
suppose that (dz1, ..., dz,) and (k1,. .., k,) satisfy the condition that >_,_, dw;y; =
O(mod n) implies >_._; y;k; = 0(mod n).

Let y1 be such that dziy; = 0(mod n). Take (y1,...,%) = (¥1,0,...,0). Then
iy dxiy; = 0(mod n), so >0, yik; = y1k1 = 0(mod n). Since dzy and ky satisfy
the hypothesis for 7 = 1, then there exists an integer a; so that k1 = a;dz(mod n).
Put

(88) kll == k’l - aldml

kl2 == k’g - aldxg

k. =k, — ardz,
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Let ¢ be the greatest common divisor of dr; and n. We want to show that
((nd/c)xs, ..., (nd/c)x,) and (kj, ..., kL) satisfy the hypothesis for the case r — 1.
Suppose that Y. _,(nd/c)x;y; = 0(mod n). Then >.._,dx;y; = O(mod ¢). Put
¢ = Mdx1 + Aan. Then

Zdl’fzyl = cA3 = M A3dx1 + AoA3n,
=2
or

—AiAzdzy + Z dz;y; = 0(mod n).

1=2

Putting y; = —A1 A3, we have

deiyi = 0(mod n).

i—1
Then
Z vkl = Zyl(k" —ardz;) = Zyiki —a deiyi =0— 0= 0(mod n).
i=1 i=1 i=1 i=1

We have & = 0(mod n) by (8.8), so the term ¢ = 1 may be deleted to obtain
Z kiy; = 0(mod n).
i=2

The hypothesis for the case r—1 is satisfied, so there exists an integer as so that k, =
az(nd/c)z;(mod n) for 2 < i <r. For i = 1, we have kj = 0 = az(nd/c)z;(mod n)
because ¢ divides dxq, so
/ n .
k, = aggdmi(mod n) for 1 <7<
Finally, we have

ki = ki + ajdx; = agﬁdmi +ardx; = (agﬁ + al) dz;(mod n) for 1 <i <r.
c c

Put a = asn/c+ a;. Then k; = adx;(mod n) for 1 < i < n. This completes the
proof of lemma 8.6 and also of lemma 8.5.
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LEMMA 8.7. Suppose that n is prime and k contains the n-th roots of unity. If
K /k is an extension of degree n, then there is an element v in k so that K = k( {/«).

PROOF. Let 6 be an element of K that is not in k. Then K = k() since there
are no intermediate subfields. Let o be a generator of G(K : k), which is cyclic of

order n. Then 6,0°,...,0°" " are all distinct. The matrix
1 1 .. 1
0 00 ... 9"
O = ; :
) .1 n—1
3 Lt (eff”‘ )

is a non-singular Vandermonde matrix. Let ( # 1 be an n-th root of unity. © does
not annihilate column vector Z = (1,¢,...,¢" Yt soif (Bo, ..., 0n_1)" = ©Z then
not all of the 3; are zero. Choosing j so that 3; # 0, we have

Bi=0"+--+ (9"i)jci ot (9""‘1>] ¢ 0.
Apply o to both sides to obtain
87 = 0°) + -+ (90”1>j Ci ot (90">j ¢l
— (0) ¢+ (gviy Clp g (90"_1>j (2
= 6;¢7 "
Therefore 3; ¢ k and (8})7 = (87)" = B}, so B} is in k. Take a = B}'. Then
K = k({/a).

LEMMA 8.8. Suppose that k contain the n-th roots of unity, and let { # 1 be an
n-th root of unity. If ( = 1(mod p) then p must divide (n).

PROOF. If ¢ # 1 then ( is a root of 2" 1 +---+ 2 + 1, so
e ¢+1=0.

If ( = 1(mod p) then n = 0(mod p).

LEMMA 8.9. Let p be a prime of k such that p does not divide n and p does not
divide element o of k. Then p does not ramify in k (/).

PrOOF. Let K =k ({/a). Let p be a prime of K dividing p. Element « is not
divisible by p, so « is a unit in o,. We have [{/a|? = |al, = |of5f = 1, so {/a
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is a unit in O,. If ¢ is in G(K : k) then there is an n-root of unity ¢ so that
o ({/a) = ¢ /. Suppose that o is in the inertial group of p. Then

o (¥/a) = Va(mod p).

Then ¢ {/a = {/a(mod p). Since {/a is a unit in O, we have ¢ = 1(mod p). Then
¢ = 1 by lemma 8.8, which shows that the inertial group is trivial. Therefore p does
not ramify in k (/).

LEMMA 8.10. The p-adic field k,, contains only a finite number of roots of unity.

PRrROOF. If N > b/(p—1) as defined in lemma 4.12 then there is an isomorphism
between subgroups W = {a € k* | ord,(av — 1) > N} and {y € o, | ord,(y) > N}.
W contains no root of unity other than o = 1. Therefore the only root of unity
in the kernel of the homomorphism o} — o, /W is a = 1. The number of roots of

unity in o} cannot be greater than [oy : W] < NpN+L,
LEMMA 8.11. If the p-adic field contains the n-th roots of unity then
[k; : (k;‘))”] = nQ(Np)a and [uy : ug] =n(Np)*

— a
where no, = p®.

PROOF. If p = () then kj is the direct product (m)u,, so
[k, : (K°)"] = nfuy : (up)"].

Let V be the group of roots of unity in k,. Then V is a cyclic group of order
divisible by n. Then

[uy 2 (up)"] = [uy, 0 V(w,)"][V(uy)™ @ (u,)”]
and
V()" : (up)"]=[V:VN(u)'=[V:V"]=n,
(8.9) [k; (k)" = nQ[up :V(ay)"].

Suppose N is sufficiently large so that log(x) is defined on W = 1 + p». Then
[u, : W] is finite. Let m be an integer divisible by [u,, : W] and by the order of V.
Consider the map a — o™ — a™uy™.

u, — (up)™ — (up)™/(up)"™.
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The kernel contains Vuy. Also, suppose « is in the kernel. Then o™ € up™, so
a™ = " or (af7")™ =1. We have af™" = ( € V, or a = (" € Vuy, so the
kernel is exactly V'uy. This shows

(8.10) [, : Vuy] = [ug’ - u™].

The map x — log(z) maps W isomorphically onto p». Let M be the image of u,’.
(We have uj’ C W since m is divisible by [u, : W].) We claim that M is a Z,
module where ¢ = Z Np is the rational prime which p divides. Let A = .7 a;q*
be an element of Z,, and put

Ap=ap+aq+---+ard®, 0<a; <q.

If y € M, let y = log(x) where x € uy’. The x = 27" where x € u,. Since
€W =1+p" then z =1+ Fyr® with b € u,. Let (¢) = p° in 0,. Then

27 = (14 6™ = 14BN +... = 14 BV Tt
27 = L+ AV = 14 gfha 4 = 14 BN
There exist elements (o, 1, B2, ..., in u, depending only on z so that
k
e = H (1 + alﬂﬂrNH) .
i=0

This shows that the sequence x* converges to an element X of u,. We have
log(lim; a0 24%) = lim;_, o log(z4*) = lim,;_ o Aglog(z), so log(X) = Alog(z).
We need to show that X is an m-th power. Let z be an element in u, so that
Ay

z™ = x. Then (zAk) = z%. There exists a convergent subsequence z*i since

u,, is compact. Then

<_lim ZAkj) = lim (ZA’“i)m = lim 2 = X.
Jj—o00 Jj—o00 j—o00

This shows that Ay is the image of an m-power, so Ay is in M. This shows M is
an Z,-module.

Next, by lemma 4.13, if a = ord,(n) then every element x in 1+ p™ T is the n-th
power of an element in 1+ p~. Therefore, p¥+% C M. This shows that M contains
[k, : Q,] independent elements, i.e., M is a free Z, module of the same dimension
as 0p,. Therefore M ~ o,, and nM =~ no,. Then

[uzl : uzm] = [M : nM] = [0, : no,| = [0, : p*] = (Np)“.

Using the above formula in (8.9) and (8.10) completes the proof of the lemma.
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LEMMA 8.12. Let k be an algebraic number field containing the n-th roots of
unity. Let E be a finite set of primes containing all infinite primes and all primes
dividing n, and let Ig(E) = [[,cp(kp)" X[ ,¢5 up- If E' contains s+1 primes then

T(E) : Ty(E)] = n2C+0),
PrOOF. We have Ix(E) = [],cp kj x [[,¢5 up.so

L(B) :Tg(E) =[] [k : (x;)"].

peEE

If p is a complex infinite prime of k then [k;‘; : (k;‘;)”] = 1; if p is a real infinite prime
then n =1 or n =2, so [kj : (k;)"] = n. If p is a finite prime then by lemma 8.11
we have [k : (ky)"] = n?Np°dr(®) | Let E contain 7 finite primes, 7, real primes
and ro complex primes. Let Ej be the set of finite primes in £. We have

(8.11) I(B) : TY(E)] = [ n®° J] Npod™) | ™.

pEEy

Each prime p in Fy divides some rational prime ¢, and we have Np = N¢/ and
ordy(n) = eordy(n). Since Ej contains all primes dividing n, and efg = [k : Q] =
r1 + 2re, we have

H Npordp(n) _ H H Npordp(n) _ H H quf ordg(n) _ H qufg ordg(n) _ nr1—|—2r2

pEEq q|n plq qln plg qln

Using this result in (8.11) produces n?7o+2r1+2r2 — p2(s+1),

Reduction to the case of extensions of prime degree n. Every finite
abelian group G contains a decomposition G = Gy D G; D -+ D G, = {1} such
that G;/G,4+1 is cyclic of prime index, so if K is an abelian extension of k then
there exist extensions k = kg C ky C --- C k, = K such that k;;/k; is cyclic of
prime degree. Lemma 8.14 will show that if the second inequality holds for each
extension k;11/k then it will hold for K/k, after which it will be enough to prove
the second inequality for cyclic extensions of prime degree.

LEMMA 8.13. Suppose that K is a finite abelian extension of Ky and K; is a
finite abelian extension of k. Then

[k*NKl/kIKl . k*NK/kIK} divides [I];(1 : KTNK/KlIK} .
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Proor. We have We have
(812) [k*NKl/kIKl : k*NK/kIK] = [NKl/kIKl : k*NK/ka N NKl/kIKl}
= [Nk, Ik, : kK" Nk, i (Nk/x,Ik) N Nk, ik, |
= [NKl/kIK1 . (k* N NKl/kIK1) NKl/k (NK/KlIK)} .
Since k* N N, iIk, D Nk, kK7, the rightmost term of (8.12) divides (8.13).
(813) [IV-I<1/1(]:I{1 . NKl/k (KTNK/KlIK)]
The kernel of the homomorphism in (8.14) contains KNk k, Ik.

Nk, /k Nk, kK1
8.14 | — Y5 N K L/
( ) K Ki/kTH NKl/k(KTNK/K11K>

Therefore the homomorphism

Ik, Ng, /1K1
KiNk/k, Ik Nk, k(K Nk k, Ik )

is a surjection, so (8.13) must divide [IK1 : KTNK/KIIK} proving the lemma.

LEMMA 8.14. Suppose that K is a finite abelian extension of Ky and K; is a
finite abelian extension of k such that the second inequality is valid for K/K, and
K;/k. Then the second inequality is valid for K/k.

PRrROOF. We have
(8.15) [Ik : k*NK/kIK} = [Ik : k*NKl/kIKl] [k*NKl/kIKl : k*NK/kIK] .

If the second fundamental inequality holds for K;/k then first factor of (8.12)
divides [K; : k|, By lemma 8.13, the second factor divides [IK1 : KiNgk /KlIK],
which divides [K : K;] if the second fundamental inequality holds for K/K;j. This
shows that the right side of (8.15) divides [K : K;][K;j : K], so [Ix : k*Ng /i Ik]|
divides [K : k], proving the second inequality for K/k.

Reduction to extensions of fields containing n-th roots of unity.

LEMMA 8.15. If the second fundamental inequality holds for abelian extensions
of prime degree n where the ground field contains the n-th roots of unity, then it
also holds for any abelian extension of degree n.

PrOOF. Put Z = k(({), where ( is a primitive n-th root of unity. Let K/k be
an abelian extension of degree n. Since Nkz/Ikz is a subgroup of Nk /, Ik then
[Ik : k*NK/kIK} divides [Ik : k*NKZ/kIKz}, and for that term we have

(816) [Ik : k*NKZ/kIKZ} = [Ik : k*Nz/kIz] [k*Nz/kIZ : k*NKZ/kIKZ] .
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By lemma 8.13, the second factor on the right side divides [Iz : Z*NKZ/ZIKZ].
Therefore [Ik : k*NK/kIK} divides [Ik : k*NZ/kIz} [Iz : Z*NKZ/ZIKZ]. We have
KZ : Z] = [K : ZN K], and the later divides [K : k] = n, so [KZ : Z] is either 1
or n. By hypothesis, the second inequality holds for KZ/Z, so [Iz : Z*Nky /ZIKZ}
divides [KZ : Z], which divides n.

If we can show that [Ik : k*Ng /kIK} and [Ik :k*Ny /kIZ] are relatively prime,
then [Ik : k*NK/kIK} must divide [Iz : Z*NKZ/ZIKZ]- If p is a prime of k and
a prime of K dividing p, then every element of (k)" is in NK; /i K. By lemma
7.5, every element of (Iy)" is in Nk /i Ix. Therefore every element in Iy /k* Nk /i Ik
has order dividing n, so n is the only prime dividing [Ty : k*Nk i Ik]. We apply
the same argument to Z/k. The degree of Z = k(({) over k is a divisor of n — 1,
so every element of (I)" ! is in Ny /lz. Therefore only primes dividing n — 1
can divide [I : k*Ngz s Iz]. This show [Ik : k*NK/kIK} and [Ik : k*Nz/kIz} are
relatively prime, which completes the proof.

Proof for extensions of prime degree n containing the n-th roots of
unity. Suppose that K/k is an extension of prime degree n, and k contains the
n-th roots of unity. By lemma 8.7, K = k({/3y) where (3 is in K but not in (k*)".
Let E be a finite set of primes of k containing all primes dividing Jy, all primes
dividing n, all infinite primes, and such that Iy = k*Ix(F) (lemma 7.11). Let I}}(E)
be the set

INE)={ielk|i,cu,ifp¢ E; i, € (k})" ifpe E}.

By lemma 4.7 (every unit in an unramified extension is a norm) and lemma 7.5
(an idele is a norm if every coordinate is a local norm), we have I}(E) C Nk /kIk.
Therefore

[T : KT (B)]

(8.17) [T : k' Niepelie] = [k*Ng ik : k*IR(E)]

The next two lemmas compute the right side of (8.17).
LEMMA 8.16. [Iy : kK*I}(E)] = n*t1.

Proor. We have

(8.18) [Nk : K'I(E)] = [K'Ix(E) : KT (E)] = [Ie(E) : K I (E) N 1L (E)]

o M(E):TE)] [(E):TAE)
= I(B) 1 (BB = (e s (B~ () K- () M L(E)

B [Ef(f){:;ﬁ {5)11] k"(B) NI(E) : k" (E)").
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The rightmost expression in (8.18) contains three subexpressions. As to the first,
by lemma 8.13 we have

() : Ti(B)] = n?C+),
As to the second, by the unit theorem k*(FE) is the direct product of a finite group
(order divisible by n) and s infinite cyclic groups, so k(E)/k™(F) is the direct
product of s 4+ 1 cyclic groups of order n. Therefore the index is

k(E): k"(E)] = n*th

Finally, we consider the third subexpression. Let § be an element of k*(E) NI} (E).
We will show that 6 is in k*(E)"™. Suppose that i is in Ix(FE). Let p be any prime
of k and p any prime of K’ = k({/0) dividing p. If p is in E then 6 is an n-th
power in kj so K|, =k, and if p is not in E then K{ /k, is unramified so i, is in
NK;J /k, (K ;)* by lemma 4.7. Since i is a norm everywhere locally then, by lemma
7.5,iisin Nk( %)/ka( o) This show that Ix(F) is contained in Nk( %)/ka( Vo)
Since Iy = k*Ii(F) then Iy is contained in k*Nk( %)/ka( va)» SO

(8.19) e KNy o) pli vm)| = 1

Extension k(3/0)/k is cyclic so the first fundamental inequality applies, and we
conclude that [k(%/6) : k] = 1 because of (8.19). We have k(/0) = k, so 0 is in
k*(E)". This proves that k*(E) NI} (E) C k*(E)", so

(8.19a) k*(E)NIL(E): k*(E)"] = 1.
Applying these three results to (8.18), we obtain the desired result
. n2(s—|—1) .
[Ik -k Ik(E)] = W =n +1.

REMARK. By formula (8.17) and lemma 8.16, we know [k*Ng /i Ik : K*I(E)]
divides n*t!. If we can find ideles i,...,is in Nk klk so that if*...i% is in
k*I}(E) only if the exponents a; all satisfy a; = 0(mod n), this would show that
there are at least n® distinct cosets of k*I}(E) in k*Ny Ik, which would show
that [Iy : k"N Iy] is either n or 1, proving the second fundamental inequality.

REMARK. The following two observations will be needed in chapter 11. First,
we have

k™ (E)IE(E) : Ig(B)] = [k*(E) : k*(E) N Ig(E)]
k" (E) : k*(E)"] o

= = =N

k(B)n1p(E): k*(B)"] 1
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Also, the kernel of the map k*(E) — %%L)(E) is k*(E)NIY(E) =k*(E)", so

k*(E) | kK (E)L(E)
(B E)

LEMMA 8.17. [k*Nk Ik : K*IZ(E)] is either n® or n*t1.

PROOF. As stated in the proof of lemma 8.17, k*(F)/k*(E)™ is the direct prod-
uct of s 4+ 1 cyclic groups of order n, so the group is a vector space of dimension
s+ 1 over finite field Z,,. Element fy is in k*(E) but not in k*(E)™, so the element
Bo can be extended to a basis By, f1, ..., s of k*(E)/k*(E)". These elements are
independent modulo (k*)™ because if 55 ... 3% =" with v in (k*)", then v must
be in k*(E), so the exponents a; must all be divisible by n. Put

T:k(q/%,..., \/E)
TU)Zk(%?" \/mm/@ \/7) 0<j<s

By lemma 8.5, we have [T : k] = n°t! and [TU) : k] = n®.

There exist infinitely many primes of T() which do not split completely in T,
because otherwise the Artin symbols for extension T/ TU) would be trivial except for
a finite set of primes, so the trivial homomorphism would serve to extend ¢ /() By
the corollary to the first fundamental inequality (Proposition 2.21), homomorphism
¢ /1) maps onto G(T : T)), so we would have [T : TU)] = 1, which is impossible.

For 1 < j < s, choose a prime ¢9) in TU) which does not split completely
in T, divides no prime in F and is not ramified in T. Let p; be a prime of T
dividing ¢, and let p; be the prime of k which ¢\9) divides. For prime ¢¥) we
have [T : TW] = n = efg with e = 1 and g < n. Therefore g = 1 and f = n, so
[T, : T ] = ef = n. Since T = TW( {/B;), this means (3; cannot be in uy . We

q(J)
have [up, : uy ] = n by lemma 8.11 (since all the primes of k dividing n are in E

Pj
and p; is not in E), so 3; generates u,, / up .

For the By with ¢ # j, (0 < ¢ < s), we must have (3, € u, because otherwise [y
would also generate u,, / u, and we would have 38; = 37+" where v is in u,,;, which
would mean T, = T(J )( \/E ) would be contained in Tg), which is a contradiction.

Therefore for 1 < j < s, we have
ﬁjgéuzjandﬁgEquifﬁ#j, 0<l<s

and

T((]‘Z) = kpj<%7 %7"'7 n\/ Bj—l? n\/ 5j+17--'7 Q/@) =
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The sets uy, , ..., uy areall distinct, so the primes py, ..., ps are distinct. Choose
a generator 7; in 0, so that p; = (7;). Define ideles iy, ..., i, in Ix(E) by
(820 ap={7
) i), =
J/p 1 otherwise

Since Tg‘;) = k,,; then i; is a norm from It locally everywhere so i; € N) /kIT(j)
by lemma 7.5. Since k ¢ K ¢ TU) we have i; € Ngadk. We will show that

i1,...,i4 satisfy the condition of the remark preceeding lemma 8.17. Suppose that
if*...i% is in k*I}}(E). Then we have

(8.21) if*...i%* =ai where o € k" and i € I}}(F).

With a defined by (8.21), we would like to compute [T : K*Ny( va icli %)].
For a prime p of k we consider the following three cases. First, suppose that p ¢ E
and p # p; for 1 < j < s. Evaluating (8.21) at component (p), we have 1 = oi,
with iy, in u,. Therefore « is in u, so p does not divide «, and p does not divide n
since E contains all primes dividing n. Therefore p does not ramify in k ({/a) /k,
so every element of u, is in Nkp( va) nckp (V).

n
p

Second, suppose that p = p; where 1 < j < s. Every element of u? is in
Nkp( %)/kk}? (Va).

Third, suppose that p is in F. Evaluating (8.21) at component (p), we have
1 = ai, with i, in u}}, so « is in uj. Then k,, ({/a) = k,, so every element of k3 is
in Nkp( %)/kkp ( {L/a)

Let F' be the set of primes of the first case (p ¢ E and p # p; for 1 < j < s).
Combining the three cases and using lemma 7.5, we have

(8.22) [T w ITws 1T % © Neva pelic va-
peF  j=1  pekE

We already know that (3; generates u,, / u, for 1 <j <s, so0

n
IZR

uy, :{ iy ‘O§r<n} C k*(E)u

and therefore

S

(8.22a) H w,, Ck*(E) [Jup.
j=1

j=1
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Applying (8.22a), we obtain

(8.22Db) Ix(E) = H u, H u,, H k, Ck"(E H u, H u, H k;,

peF peFE peF peEE

Using the (8.22b) and (8.22), we have

L =k'I(E) Ck* [[u, [Jup, [] ¥ €K' Nu yay i va-
peEF Jj=1 peEE

This shows that

(8.23) T + K" Nig( ) i vy ] = 1

Since k({/a)/k is cyclic, the first fundamental inequality applies, so [k({/«) : K]
divides [Ii : K* N va)/ilk %)}, and then by (8.23) we have [k({/«a) : k] = 1.
Then k({/a) =k, so o is in (k*)". Taking components of (8.21) at p; for 1 < j <'s,
we obtain

_ . *\N .
m;? = aip;, where a € (kj)", and i), € up,.

Then p;.” = (w;j) = (B)" in 0y, so a; = O(mod n) for 1 < j < s. This proves
that there are at least n® distinct cosets of k*I}}(E) in k* N Ik, which proves the

lemma.
PROPOSITION 8.18. [Iy : k*Ng /i Ik] divides [K : K].
PrROOF. By (8.17) and lemmas 8.16 and 8.17, [Iy : k*Nk /i Ik] is 1 or n.

PROPOSITION 8.19. The second fundamental inequality holds for any abelian
extension.

ProoOF. By Proposition 8.18, the second fundamental inequality holds for ex-
tensions of prime degree n where the ground field contains the n-th roots of unity.
Lemma 8.15 removes the requirement that the ground field contain the n-th roots of
unity. Lemma 8.14 and the remark preceeding it show that the second fundamental
inequality holds for any abelian extension.

Corollary to theorem 1. Now that theorem 1 has been established, the follow-
ing corollary will be of use in proving theorem 2. Let k be an algebraic number field
containing the n-th roots of unity where n is prime. Let E be a finite set of primes
of k containing the infinite primes, primes dividing n, and so that Iy = k*Ix(F). If
E contains s 4 1 primes then k* (E)/(k*(E))n is the direct product of s 4+ 1 cyclic
groups of order n. Let fy,...,0s be such that the cosets of (k*(E))n generate
k*(FE).
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COROLLARY 8.20. The kernel of qbk( &/ For.ns /B2 /K is K*IN(E).

PROOF. Since the s+ 1 elements [, ..., 3s are independent modulo (k*)™ then
n n . _ 8 +1 . .
k(/Bo,..., ¥/Bs) : k] =n°T'. For 0 < j <s, let H; be the kernel of qﬁk( 2Bk
Since f; is in k*(F) then

HlB) = Ny vy
By Theorem I, we have

SO
(8.24) k*I(F)C HyN---N Hs.

By lemma 8.5 and formula (5.1), for i in Iy, we have

The right side is 1 if and only if ¢k( W>/k(i) =1 for 0 < j < s, that is, if and only
J
ifiisin HyN---N H,. Therefore

(825) ker (gbk(T\L/ﬁ_o,,T\L/E)/k) = Hom ﬂHS

By theorem I, we have

(8.26) [Ix: HoN---N Hy]

Il
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By lemma 8.16, we have [Iy : k*IZ(F)] = n®T!. By (8.24) and (8.26), we conclude
that HoN---N Hy = kK*I}(£). Then by (8.25), we conclude

ker (%( o %)/k) = K'I}(E).



