10:29 a.m. September 23, 2006

Essays on representations of p-adic groups

Smooth representations

Bill Casselman University of British Columbia cass@math.ubc.ca

In this chapter I'll define admissible representations and prove their basic properties. For technical reasons, I shall initially take the coefficient right to be an arbitrary Noetherian ring.

Contents

- 1. Definitions
- 2. The contragredient
- 3. Admissible representations of parabolic subgroups
- 4. Induced representations

1. Definitions

Let \mathcal{R} be a commutative Noetherian ring containing the field \mathbb{Q} . A **smooth** *G* module over \mathcal{R} is a representation (π, V) of *G* on a module *V* over \mathcal{R} such that each *v* in *V* is fixed by an open subgroup of *G*. The smooth representation (π, V) is said to be **admissible** if for each open subgroup *K* in *G* the subspace V^K of vectors fixed by elements of *K* is finitely generated over \mathcal{R} . Usually *R* will be a field (necessarily of characteristic 0) in which case this means just that V^K has finite dimension.

Suppose (π, V) to be a smooth representation of G over \mathcal{R} . If D is a smooth distribution of compact support with values in \mathcal{R} , there is a canonical operator $\pi(D)$ on V associated to it. Fix for the moment a right-invariant Haar measure dx on G. Recall that given the choice of dx, smooth R-valued functions may be identified with smooth distributions:

$$\varphi \longmapsto D_{\varphi} = \varphi(x) \, dx$$

Suppose φ to be the smooth function of compact support on G such that $D = D_{\varphi}$. Then for v in V we define

$$\pi(D)v = \int_G \varphi(x)\pi(x)\,dx\;.$$

If *K* is a compact open subgroup then the distribution μ_K amounts to integration over *K*, scaled so as to be idempotent. The operator $\pi(\mu_K)$ is projection from *V* onto its subspace V^K of vectors fixed by *K*.

Suppose that D_1 and D_2 are two smooth distributions of compact support, corresponding to smooth function φ_1 and φ_2 . Then

$$\pi(D_1)\pi(D_2)v = \int_G \varphi_1(x)\pi(x) \, dx \int_G \varphi_2(y)\pi(y)v \, dy$$
$$= \int_{G\times G} \varphi_1(x)\varphi(y)\pi(xy)v \, dx \, dy$$
$$= \int_G \varphi(z)\pi(z)v \, dz$$
$$= \pi(D_\varphi)v$$
where $\varphi(z) = \int_G \varphi_1(zy^{-1})\varphi_2(y) \, dy$

The point of allowing a smooth representation to have a rather arbitrary coefficient ring is essentially a matter of book-keeping, so as to keep track of the kind of formulas that arise. If *K* is a compact open subgroup of *G*, with V^K is free over the ring *R* (which will often be the case) and *D* is right- and left-invariant under *K*, then $\pi(D)$ will be represented by a matrix whose coefficients are in *R*.

The space of smooth *R*-valued distributions of compact support, with convolution as product, is called the **Hecke algebra** $\mathcal{H}_R(G)$ of the group with coefficients in *R*. It does not have a multiplicative unit. The subalgebra $\mathcal{H}_R(G//K)$ of distributions right- and left- invariant with respect to a compact open subgroup *K* has the multiplicative unit μ_K .

For every closed subgroup *H* of *G*, define V(H) to be the subspace of *V* generated by the $\pi(h)v - v$ for *h* in *H*.

[projection] **Proposition 1.1.** For any compact open subgroup K and smooth representation V, we have an equality

$$V(K) = \{ v \in V \mid \pi(\mu_K)v = 0 \}$$

and a direct sum decomposition

$$V = V(K) \oplus V^K .$$

Proof. If v is fixed by K_* then

$$\frac{1}{[K:K_*]} \sum_{K/K_*} \pi(k) v = \pi(\mu_K) v$$

and of course trivially

$$\frac{1}{[K:K_*]}\sum_{K/K_*}v=v$$

If we subtract the second from the first, we get

$$v - \pi(\mu_K)v = \frac{-1}{[K:K_*]} \sum_{K/K_*} (\pi(k)v - v)$$

[vkexactness] Corollary 1.2. The functor $V \rightsquigarrow V^K$ is exact for every compact open subgroup K of G.

[abelian] Corollary 1.3. If

$$0 \longrightarrow U \longrightarrow V \longrightarrow W \longrightarrow 0$$

is an exact sequence of smooth representations, V is admissible if and only if both U and W are.

[restriction-to-K] **Proposition 1.4.** Suppose K to be a fixed compact open subgroup of G. A smooth representation is admissible if and only if its restriction to K is the direct sum of irreducible smooth representations of K, each with finite multiplicity.

Proof. Choose a sequence of compact open subgroups K_n normal in K and with $\{1\}$ as limit. Then $V = V(K_n) \oplus V^{K_n}$. The representation of K/K_n decomposes into a finite sum of irreducible representations of K.

2. The contragredient

If (π, V) is an admissible representation of G, the smooth vectors in its linear dual Hom_{\mathcal{R}} (V, \mathcal{R}) define its **contragredient** representation $(\tilde{\pi}, \tilde{V})$. If K is a compact open subgroup of G then because $V = V^K + V(K)$ the subspace of K-fixed vectors in \tilde{V} is equal to

$$\operatorname{Hom}_{\mathcal{R}}(V^{K},\mathcal{R})$$

From the exact sequence of *R*-modules

$$\mathcal{R}^n \longrightarrow V^K \longrightarrow 0$$

we deduce

$$0 \longrightarrow \operatorname{Hom}_{\mathcal{R}}(V^{K}, \mathcal{R}) \longrightarrow \operatorname{Hom}_{\mathcal{R}}(\mathcal{R}^{n}, \mathcal{R}) \cong \mathcal{R}^{n}$$

Therefore \widetilde{V}^K is finitely generated over \mathcal{R} , and $\widetilde{\pi}$ is again admissible. If \mathcal{R} is a field, which is often the only case in which contragredients are significant, the assignment of $\widetilde{\pi}$ to π is exact, and the canonical map from V into the contragredient of its contragredient will be an isomorphism.

If (π, V) is an admissible representation of G then each space V^K is stable under the centre Z_G of G. Assume for the moment that \mathcal{R} is an algebraically closed field. The subgroup $Z_G \cap K$ acts trivially on it, and the quotient $Z_G/Z_G \cap K$ is finitely generated, so it elementary to see that V^K decomposes into a direct sum of primary components V^K_ω parametrized by homomorphisms

$$\omega: Z_G \longrightarrow \mathcal{R}^{\times}$$
.

For each ω occurring there exists an integer n such that $(\pi(z) - \omega(z))^n = 0$ on V_{ω}^K . If π is irreducible there is just one component and the centre must act by scalars. In general, I call an admissible representation **centrally simple** if this occurs, and in this case the character $\zeta_{\pi}: Z_G \to \mathcal{R}^{\times}$ by which Z_G acts is called the **central character** of π . If Z_G acts through the character ω then π is called an ω -representation. For any central character ω with values in \mathbb{R}^{\times} the Hecke algebra $\mathcal{H}_{R,\omega}$ is that of uniformly smooth functions on G compactly supported modulo Z_G such that

$$f(zg) = \omega(z)^{-1} f(g)$$

If π is centrally simple with central character ω it becomes a module over this Hecke algebra:

$$\pi(f)v = \int_{G/Z_G} f(x)\pi(x)v \, dx \,,$$

which is well defined since $f(zx)\pi(zx) = f(x)\pi(x)$.

3. Admissible representations of parabolic subgroups

Let $P = M_P N_P = MN$ be a parabolic subgroup of G, $A = A_P$ the split centre of M_P . There exists a basis of neighbourhoods of P of the form $U_M U_N$ where U_M is a compact open subgroup of M, U_N is one of N, and U_M conjugates U_N to itself.

4 [induced-admissible] Since $P \setminus G$ is compact, Proposition 4.1 implies immediately:

olic-induced-admissible] **Proposition 3.1.** If (σ, U) is an admissible representation of P then $Ind(\sigma | P, G)$ is one of G.

The group M may be identified with a quotient of P, and therefore the admissible representations of M may be identified with those of P trivial on N. It happens that there are no others:

[parabolic-admissible] **Proposition 3.2.** Every admissible representation of P is trivial on N.

Proof. We begin with a preliminary result.

[noetherian] Lemma 3.3. Suppose *B* to be a finitely generated module over the Noetherian ring *R*. If $f: B \to B$ is an *R*-injection with the property that for each maximal ideal \mathfrak{m} of *R* the induced map $f_{\mathfrak{m}}: B/\mathfrak{m}B \to B/\mathfrak{m}B$ is also injective, then *f* is itself an isomorphism.

Proof. Let *C* be the quotient B/f(B). The exact sequence

$$0 \longrightarrow B \xrightarrow{f} B \longrightarrow C \longrightarrow 0$$

induces for each m an exact sequence

$$0 \longrightarrow B/\mathfrak{m}B \xrightarrow{f_\mathfrak{m}} B/\mathfrak{m}B \longrightarrow C/\mathfrak{m}C \longrightarrow 0.$$

It is by assumption that the left hand map is injective. Since $F = R/\mathfrak{m}$ is a field and B is finitely generated, the space $B/\mathfrak{m}B$ is a finite-dimensional vector space over F, and therefore $f_{\mathfrak{m}}$ an isomorphism. Hence $C/\mathfrak{m}C = 0$ for all \mathfrak{m} . The module C is Noetherian, which means that if $C \neq 0$, it possesses at least one maximal proper submodule D. The quotient C/D must be isomorphic to R/\mathfrak{m} for some maximal ideal \mathfrak{m} . But then $C/\mathfrak{m}C \neq 0$, a contradiction. Therefore C = 0 and f an isomorphism.

Let (π, V) be an admissible representation of P, and suppose v in V. We want to show that $\pi(n)v = v$ for all n in N.

Let $U = U_M U_N$ be a compact opne subgroup of P fixing v. We can find a in A such that $a^{-1}Ua \subseteq U$. For u in U we have

$$\pi(u)\pi(a)v = \pi(a)\pi(a^{-1}ua)v = \pi(a)v$$

4 [noetherian] so that V^U is stable under $\pi(a)$. That $\pi(a)$ is surjective on V^U , hence bijective, follows from Lemma 3.3.

For any *n* in *N* there will exist some power *b* of *a* such that $b^{-1}nb$ lies in *U*. But then for *v* in V^U the vector $v_* = \pi(b)^{-1}v$ will also lie in V^U and

$$\pi(n)v = \pi(n)\pi(b)\pi(b^{-1})v = \pi(n)\pi(b)v_* = \pi(b)\pi(b^{-1}nb)v_* = \pi(b)v_* = v$$

which means that N fixes all vectors in V^U and in particular v.

4. Induced representations

If *H* is a closed subgroup of *G* and (σ, U) is a smooth representation of *H*, the **unnormalized** smooth representation $\operatorname{ind}(\sigma | H, G)$ **induced** by σ is the right regular representation of *G* on the space of all uniformly smooth functions $f: G \to U$ such that

$$f(hg) = \sigma(h)f(g)$$

for all h in H, g in G. The **normalized** induced representation is

$$\operatorname{Ind}(\sigma \mid H, G) = \operatorname{ind}(\sigma \delta_H^{1/2} \delta_G^{-1/2} \mid H, G) .$$

Compactly supported induced representations ind_c and Ind_c are on spaces of functions of compact support on *G* modulo *H*.

[induced-admissible] **Proposition 4.1.** If $H \setminus G$ is compact and (σ, U) admissible then $Ind(\sigma \mid H, G)$ is an admissible representation of G.

Proof. If $H \setminus G/K$ is the disjoint union of cosets HxK (for x in a finite set X), then the map

$$f\longmapsto (f(x))$$

is a linear isomorphism

$$\operatorname{Ind}(\sigma \mid H, G)^K \cong \bigoplus_{x \in X} U^{H \cap xKx^{-1}} \square$$

[also-free] **Corollary 4.2.** If U is free over \mathcal{R} so are the induced representations.

This follows from the proof.

Suppose (π, V) to be a smooth representation of G, (σ, U) one of H. The map

$$\Lambda: \operatorname{Ind}(\sigma \mid H, G) \to U$$

taking f to f(1) is an H-morphism from $\operatorname{Ind}(\sigma)$ to $\sigma \delta_H^{1/2} \delta_G^{-1/2}$. If we are given a G-morphism from V to $\operatorname{Ind}(\sigma \mid H, G)$ then composition with Λ induces an H-morphism from V to $\sigma \delta_H^{1/2} \delta_G^{-1/2}$.

[frobenius] **Proposition 4.3.** If π is a smooth representation of *G* and σ one of *H* then evaluation at 1 induces a canonical isomorphism

$$\operatorname{Hom}_{G}(\pi, \operatorname{Ind}(\sigma \mid H, G)) \to \operatorname{Hom}_{H}(\pi, \sigma \delta_{H}^{1/2} \delta_{G}^{-1/2}).$$

Q [one-densities] For F in $\operatorname{Ind}(\widetilde{\sigma} | H, G)$ and f in $\operatorname{Ind}_c(\sigma | H, G)$ then according to the function $\langle F(g), f(g) \rangle$ is a left-Hinvariant one-density of compact support on $H \setminus G$. If we are given right invariant Haar measures dgon G and dh on H then we can define a canonical pairing between $\operatorname{Ind}(\widetilde{\sigma} | H, G)$ and $\operatorname{Ind}_c(\sigma | H, G)$ according to the formula

$$\langle F, f \rangle = \int_{H \setminus G} \langle F(x), f(x) \rangle \, dx$$

Thus there is an essentially canonical *G*-covariant map from $\operatorname{Ind}(\widetilde{\sigma} \mid H, G)$ to the smooth dual of $\operatorname{Ind}_c(\sigma \mid H, G)$. In particular, if $\mathcal{R} = \mathbb{C}$ and σ is unitary so is $\operatorname{Ind}(\sigma \mid H, G)$.