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In this chapter, we shall associate to every smooth representation π and parabolic subgroup P of G
an admissible representation of MP . These representations turn out to control much of the structure

of admissible representations induced from parabolic subgroups, and also to describe the behaviour at
infinity on G of the matrix coefficients of π when it is admissible. The origin of most of the results in this

section is a lecture of Jacquet’s presented at a conference in Montecatini.

1. The Jacquet module

Lemma 1.1. If N is a padic unipotent group, it possesses arbitrarily large compact open subgroups.[unipotent-large]

Proof. It is certainly true for the group of unipotent upper triangular matrices in GLn. Here, if a is
the diagonal matrix with ai,i = $i then conjugation by powers of a will scale any given compact open

subgroup to an arbitrarily large one. But any unipotent group can be embedded as a closed subgroup in

one of these.

Fix the parabolic subgroup P = MN . If (π, V ) is any smooth representation of N , define V (N) to be

the subspace of V generated by vectors of the form

π(n)v − v

as n ranges over N . The group N acts trivially on the quotient

VN = V/V (N)

It is universal with respect to this property:

Proposition 1.2. The projection from V to VN induces for every smooth Rrepresentation (σ, U) on[universality]

which N acts trivially an isomorphism

HomN (V, U) ∼= HomR(VN , U) .

Lemma 1.3. The subspace V (N) is also the union of the subspaces V (U) as U varies over the compact[union-vu]

open subgroups of N .

Proof. Immediately from Lemma 1.1.♣ [unipotent-large]

Proposition 1.4. If[jacquet-exact]

0 → U → V → W → 0

is an exact sequence of smooth representations of N , then the sequence

0 → UN → VN → WN → 0
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is also exact.

Proof. That the sequence
UN → VN → WN → 0

is exact follows immediately from the definition of V (N). The only nontrivial point is the injectivity
of UN → VN . If u in U lies in V (N) then it lies in V (S) for some compact open subgroup S of N .

According to Lemma 2.1, the space V has a canonical decomposition♣ [projection]

V = V S ⊕ V (S) ,

and v lies in V (S) if and only if ∫

S

π(s)v ds = 0

But this last equation holds in U as well, since U is stable under S, so v must lie in U(S).

If (π, V ) is a smooth representation of G and σ a smooth representation of M , then •tells us that♥ [frobenius]♣ [frobenius]

HomG(π, Ind(σ |P, G)) ∼= HomP (π, σδ
−1/2

P ) .

Since σ is trivial on N , any P map from V to U factors through VN . The space V (N) is stable under P ,
and there is hence a natural representation of M on VN . The Jacquet module of π is this representation

twisted by the character δ
−1/2

P . This is designed exactly to allow the simplest formulation of this:

Proposition 1.5. If (π, V ) is any smooth representation of G and (σ, U) one of M then evaluation at 1[jacquet-frobenius]

induces an isomorphism
HomG

(
π, Ind(σ |P, G)

)
∼= HomM (πN , σ)

2. Admissibility of the Jacquet module

Now fix an admissible representation (π, V ) of G. Let P , P be an opposing pair of parabolic subgroups,

K0 to be a compact open subgroup possessing an Iwahori factorization K0 = N0M0N0 with respect to

this pair. For each a in A−−

P let Ta be the smooth distribution

(
1

measK0

)
charK0aK0

dx

on G. For any smooth representation (π, V ) and v in V K0 let τa be the restriction of π(Ta) to V K0 . Thus
for v in V K0

τa(v) = π(Ta) v

=
∑

K0aK0/K0

π(g) v

=
∑

K0/K0∩aK0a−1

π(k)π(a) v .

This is valid since the isotropy subgroup of a in the action of K0 acting on K0aK0/K0 is aK0a
−1 ∩ K0,

hence

k 7→ kaK0

is a bijection of K0/K0 ∩ aK0a
−1 with K0aK0/K0.

Lemma 2.1. If v lies in V K0 with image u in VN , then the image of τav in VN is equal to δ
−1/2

P (a)πN (a)u.[projection]
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Proof. Since K0 = N0M0N0, aK0a
−1 = (aN0a

−1)M0(aN0a
−1). Since N ⊆ aNa−1, the inclusion

of N0/aN0a
−1 into K0/(aK0a

−1 ∩ K0) is in turn a bijection. Since the index of aN0a
−1 in N0 or,

equivalently, that of N0 in a−1N0a is δ−1

P (a):

τa(v) =
∑

K0/aK0a−1∩K0

π(k)π(a)v

=
∑

N0/aN0a−1

π(n)π(a)v

= π(a)
∑

a−1N0a/N0

π(n)v .

Since π(n)v and v have the same image in VN , this concludes the proof.

Lemma 2.2. For every a, b in A−−

P ,[tab]

τab = τaτb

Proof. We have
TaTb =

∑

N0/aN0a−1

∑

N0/bN0b−1

π(n1π(a)π(n2)π(b)v

=
∑

N0/aN0a−1

∑

N0/bN0b−1

π(n1)π(an2a
−1)π(ab)v

=
∑

N0/abN0b−1a−1

π(n)π(ab)v

= Tab

since as n1 ranges over representatives of N0/aN0a
−1 and and n2 over representatives of N0/bN0b

−1,

the products n1 an2a
−1 range over representatives of N0/abN0b

−1a−1.

Lemma 2.3. For any a in A−−

P the subspace of V K0 on which τa acts nilpotently coincides with[kernel-ta]

V K0 ∩ V (N).

Proof. Since R is Noetherian and V K0 finitely generated, the increasing sequence

ker(τa) ⊆ ker(τa2) ⊆ ker(τa3) ⊆ . . .

is eventually stationary. It must be shown that it is the same as V K0 ∩ V (N).

Choose n large enough so that V K0 ∩ V (N) = V K0 ∩ V (a−nN0a
n). Let b = an. Since

τbv = π(b)
∑

b−1N0b/N0

π(n)v ,

and τbv = 0 if and only if
∑

b−1N0b/N0
π(n)v = 0, and again if and only if v lies in V (N).

The canonical map from V to VN takes V K0 to V M0

N . The kernel of this map is V ∩ V (N), which by
Lemma 2.3 is equal to the kernel of τan for large n.♣ [kernel-ta]

Lemma 2.4. The image of τan in V K0 is independent of n if n is large enough. The map τa is invertible[stable]

on it. The intersection of it with V (N) is trivial.

Proof. Choose n so large that ker(τan) = ker(τam) for all m ≥ n. By Lemma 2.3 this kernel coincides♣ [kernel-ta]

with V K0 ∩V (N). Let U be the image of τan . If u = τanv and τanv = 0 then τa2nv = 0, which means by

assumption that in fact u = τanv = 0. Therefore the intersection of U with V (N) is trivial, the projection
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from V to VN is injective on U , and τa is also injective on it. If m is a maximal ideal of R, this remains

true for U/mU , and therefore by •τa is invertible on U . This implies that U is independent of the choice♥ [noetherian]♣ [noetherian]

of n.

Let V K0

N be this common image of the τan for large n. The point is that it splits the canonical projection

from V K0 to V M0

N , which turns out to be a surjection.

Proposition 2.5. The canonical projection from V K0

N to V M0

N is an isomorphism.[jacquetdecomp]

Proof. Suppose given u in V M0

N . Since M0 is compact, we can find v in V M0 whose image in VN is u.

Suppose that v is fixed also by N∗ for some small N∗. If we choose b in A−−

P such that bN0b
−1 ⊆ N∗,

then v∗ = δ1/2(b)π(b)v is fixed by M0N0. Because K0 = N0M0N0, the average of π(n)v∗ over N0 is the

same as the average of π(k)v∗ over K0. This average lies in V K0 and has image πN (b)u in VN . But then

τav∗ has image δ1/2(a)πN (ab)u in VN and also lies in V K0

N . Since τab acts invertibly on V K0

N , we can find

v∗∗ in V K0

N such that τabv∗∗ = τaτbv∗∗ = τav∗, and whose image in VN is u.

As a consequence:

Theorem 2.6. If (π, V ) is an admissible representation of G then (πN , VN ) is an admissible representation[jacquet-admissible]

of M .

Thus whenever K0 is a subgroup possessing an Iwahori factorization with respect to P , we have a

canonical subspace of V K0 projecting isomorphically onto V M0 . For a given M0 there may be many
different K0 suitable; how does the space V K0

N vary with K0?

Lemma 2.7. Let K1 ⊆ K0 be two compact open subgroups of G possessing an Iwahori factorization[coherence]

with respect to P . If v1 in V K1

N and v0 in V K0

N have the same image in VN , then π(µK0
)v1 = v0.

3. The canonical pairing

Continue to let K0 be a compact open subgroup of G possessing an Iwahori factorization N0M0N0 with

respect to the parabolic subgroup P , (π, V ) an admissible representation of G. Let N∗ be a compact open
subgroup of N such that V K0 ∩ V (N) ⊆ V (N∗).

Lemma 3.1. For v in V K0

N , ṽ in Ṽ K0 ∩ Ṽ (N), 〈v, ṽ〉 = 0.[annihilation]

Proof. This follows easily from the fact that v = π(Tan)u for some a in A−−

P , u in V K0 , and large n,

while π(Tan)ṽ = for large n.

Theorem 3.2. If (π, V is an admissible representation of G, then there exists a unique pairing between[asymptotic-pairing]

VN and ṼN with the property that whenever v has image u in VN and ṽ has image ũ in ṼN , then for all
a in A−−

P near enough to 0

〈π(a)v, ṽ〉 = δ
1/2

P (a)〈πN (a)u, ũ〉 .

Similarly with the roles of V and Ṽ reversed. If the coefficient ring is a field, this pairing gives rise to an

isomorphism of (π̃N , ṼN ) with the contragredient of the representation (πN , VN ).

Proof. Let u in VN and ũ in ṼN be given. Suppose that u and ũ are both fixed by elements of M0. Let v

be a vector in V K0

N with image u, and similarly for ṽ and ũ. Define the pairing by the formula

〈u, ũ〉can = 〈ṽ, v〉 .

It follows from Lemma 3.1 and Lemma 2.7 that this definition depends only on u and ũ, and not on the♣ [annihilation]♣ [coherence]

choices of v and ṽ. That
〈π(a)v, ṽ〉 = δ

1/2

P (a)〈πN (a)u, ũ〉can
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also follows from Lemma 3.1 and Lemma 2.7. That this property characterizes the pairing follows from♣ [annihilation]♣ [coherence]

the invertibility of τa on V K0

N .

This pairing is called the canonical pairing .


