Essays on representations of p-adic groups

The Jacquet module

Bill Casselman
University of British Columbia
cass@math.ubc.ca

In this chapter, we shall associate to every smooth representation π and parabolic subgroup P of G an admissible representation of M_{P}. These representations turn out to control much of the structure of admissible representations induced from parabolic subgroups, and also to describe the behaviour at infinity on G of the matrix coefficients of π when it is admissible. The origin of most of the results in this section is a lecture of Jacquet's presented at a conference in Montecatini.

1. The Jacquet module

[unipotent-large] Lemma 1.1. If N is a \mathfrak{p}-adic unipotent group, it possesses arbitrarily large compact open subgroups.
Proof. It is certainly true for the group of unipotent upper triangular matrices in $G L_{n}$. Here, if a is the diagonal matrix with $a_{i, i}=\varpi^{i}$ then conjugation by powers of a will scale any given compact open subgroup to an arbitrarily large one. But any unipotent group can be embedded as a closed subgroup in one of these.

Fix the parabolic subgroup $P=M N$. If (π, V) is any smooth representation of N, define $V(N)$ to be the subspace of V generated by vectors of the form

$$
\pi(n) v-v
$$

as n ranges over N. The group N acts trivially on the quotient

$$
V_{N}=V / V(N)
$$

It is universal with respect to this property:
[universality] Proposition 1.2. The projection from V to V_{N} induces for every smooth R-representation (σ, U) on which N acts trivially an isomorphism

$$
\operatorname{Hom}_{N}(V, U) \cong \operatorname{Hom}_{R}\left(V_{N}, U\right)
$$

[union-vu] Lemma 1.3. The subspace $V(N)$ is also the union of the subspaces $V(U)$ as U varies over the compact open subgroups of N.
\& [unipotent-large] Proof. Immediately from Lemma 1.1.
[jacquet-exact] Proposition 1.4. If

$$
0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0
$$

is an exact sequence of smooth representations of N, then the sequence

$$
0 \rightarrow U_{N} \rightarrow V_{N} \rightarrow W_{N} \rightarrow 0
$$

is also exact.
Proof. That the sequence

$$
U_{N} \rightarrow V_{N} \rightarrow W_{N} \rightarrow 0
$$

is exact follows immediately from the definition of $V(N)$. The only non-trivial point is the injectivity of $U_{N} \rightarrow V_{N}$. If u in U lies in $V(N)$ then it lies in $V(S)$ for some compact open subgroup S of N.
\& [projection] According to Lemma 2.1, the space V has a canonical decomposition

$$
V=V^{S} \oplus V(S)
$$

and v lies in $V(S)$ if and only if

$$
\int_{S} \pi(s) v d s=0
$$

But this last equation holds in U as well, since U is stable under S, so v must lie in $U(S)$.
\mathbb{Q} [frobenius] If (π, V) is a smooth representation of G and σ a smooth representation of M, then ells us that

$$
\operatorname{Hom}_{G}(\pi, \operatorname{Ind}(\sigma \mid P, G)) \cong \operatorname{Hom}_{P}\left(\pi, \sigma \delta_{P}^{-1 / 2}\right)
$$

Since σ is trivial on N, any P-map from V to U factors through V_{N}. The space $V(N)$ is stable under P, and there is hence a natural representation of M on V_{N}. The Jacquet module of π is this representation twisted by the character $\delta_{P}^{-1 / 2}$. This is designed exactly to allow the simplest formulation of this:
[jacquet-frobenius] Proposition 1.5. If (π, V) is any smooth representation of G and (σ, U) one of M then evaluation at 1 induces an isomorphism

$$
\operatorname{Hom}_{G}(\pi, \operatorname{Ind}(\sigma \mid P, G)) \cong \operatorname{Hom}_{M}\left(\pi_{N}, \sigma\right)
$$

2. Admissibility of the Jacquet module

Now fix an admissible representation (π, V) of G. Let P, \bar{P} be an opposing pair of parabolic subgroups, K_{0} to be a compact open subgroup possessing an Iwahori factorization $K_{0}=N_{0} M_{0} \bar{N}_{0}$ with respect to this pair. For each a in A_{P}^{--}let T_{a} be the smooth distribution

$$
\left(\frac{1}{\operatorname{meas} K_{0}}\right) \mathfrak{c h a r}_{K_{0} a K_{0}} d x
$$

on G. For any smooth representation (π, V) and v in $V^{K_{0}}$ let τ_{a} be the restriction of $\pi\left(T_{a}\right)$ to $V^{K_{0}}$. Thus for v in $V^{K_{0}}$

$$
\begin{aligned}
\tau_{a}(v) & =\pi\left(T_{a}\right) v \\
& =\sum_{K_{0} a K_{0} / K_{0}} \pi(g) v \\
& =\sum_{K_{0} / K_{0} \cap a K_{0} a^{-1}} \pi(k) \pi(a) v .
\end{aligned}
$$

This is valid since the isotropy subgroup of a in the action of K_{0} acting on $K_{0} a K_{0} / K_{0}$ is $a K_{0} a^{-1} \cap K_{0}$, hence

$$
k \mapsto k a K_{0}
$$

is a bijection of $K_{0} / K_{0} \cap a K_{0} a^{-1}$ with $K_{0} a K_{0} / K_{0}$.
[projection] Lemma 2.1. If v lies in $V^{K 0}$ with image u in V_{N}, then the image of $\tau_{a} v$ in V_{N} is equal to $\delta_{P}^{-1 / 2}(a) \pi_{N}(a) u$.

Proof. Since $K_{0}=N_{0} M_{0} \bar{N}_{0}, a K_{0} a^{-1}=\left(a N_{0} a^{-1}\right) M_{0}\left(a N_{0} a^{-1}\right)$. Since $\bar{N} \subseteq a \bar{N} a^{-1}$, the inclusion of $N_{0} / a N_{0} a^{-1}$ into $K_{0} /\left(a K_{0} a^{-1} \cap K_{0}\right)$ is in turn a bijection. Since the index of $a N_{0} a^{-1}$ in N_{0} or, equivalently, that of N_{0} in $a^{-1} N_{0} a$ is $\delta_{P}^{-1}(a)$:

$$
\begin{aligned}
\tau_{a}(v) & =\sum_{K_{0} / a K_{0} a^{-1} \cap K_{0}} \pi(k) \pi(a) v \\
& =\sum_{N_{0} / a N_{0} a^{-1}} \pi(n) \pi(a) v \\
& =\pi(a) \sum_{a^{-1} N_{0} a / N_{0}} \pi(n) v .
\end{aligned}
$$

Since $\pi(n) v$ and v have the same image in V_{N}, this concludes the proof.
[tab] Lemma 2.2. For every a, b in A_{P}^{--},

$$
\tau_{a b}=\tau_{a} \tau_{b}
$$

Proof. We have

$$
\begin{aligned}
T_{a} T_{b} & =\sum_{N_{0} / a N_{0} a^{-1}} \sum_{N_{0} / b N_{0} b^{-1}} \pi\left(n_{1} \pi(a) \pi\left(n_{2}\right) \pi(b) v\right. \\
& =\sum_{N_{0} / a N_{0} a^{-1}} \sum_{N_{0} / b N_{0} b^{-1}} \pi\left(n_{1}\right) \pi\left(a n_{2} a^{-1}\right) \pi(a b) v \\
& =\sum_{N_{0} / a b N_{0} b^{-1} a^{-1}} \pi(n) \pi(a b) v \\
& =T_{a b}
\end{aligned}
$$

since as n_{1} ranges over representatives of $N_{0} / a N_{0} a^{-1}$ and and n_{2} over representatives of $N_{0} / b N_{0} b^{-1}$, the products $n_{1} a n_{2} a^{-1}$ range over representatives of $N_{0} / a b N_{0} b^{-1} a^{-1}$.
[kernel-ta] Lemma 2.3. For any a in A_{P}^{--}the subspace of $V^{K_{0}}$ on which τ_{a} acts nilpotently coincides with $V^{K_{0}} \cap V(N)$.

Proof. Since R is Noetherian and $V^{K_{0}}$ finitely generated, the increasing sequence

$$
\operatorname{ker}\left(\tau_{a}\right) \subseteq \operatorname{ker}\left(\tau_{a^{2}}\right) \subseteq \operatorname{ker}\left(\tau_{a^{3}}\right) \subseteq \ldots
$$

is eventually stationary. It must be shown that it is the same as $V^{K_{0}} \cap V(N)$.
Choose n large enough so that $V^{K_{0}} \cap V(N)=V^{K_{0}} \cap V\left(a^{-n} N_{0} a^{n}\right)$. Let $b=a^{n}$. Since

$$
\tau_{b} v=\pi(b) \sum_{b^{-1} N_{0} b / N_{0}} \pi(n) v
$$

and $\tau_{b} v=0$ if and only if $\sum_{b^{-1} N_{0} b / N_{0}} \pi(n) v=0$, and again if and only if v lies in $V(N)$. 0
The canonical map from V to V_{N} takes $V^{K_{0}}$ to $V_{N}^{M_{0}}$. The kernel of this map is $V \cap V(N)$, which by
\& [kernel-ta] Lemma 2.3 is equal to the kernel of $\tau_{a^{n}}$ for large n.
[stable] Lemma 2.4. The image of $\tau_{a^{n}}$ in $V^{K_{0}}$ is independent of n if n is large enough. The map τ_{a} is invertible on it. The intersection of it with $V(N)$ is trivial.
$\boldsymbol{\&}$ [kernel-ta] Proof. Choose n so large that $\operatorname{ker}\left(\tau_{a^{n}}\right)=\operatorname{ker}\left(\tau_{a^{m}}\right)$ for all $m \geq n$. By Lemma 2.3 this kernel coincides with $V^{K_{0}} \cap V(N)$. Let U be the image of $\tau_{a^{n}}$. If $u=\tau_{a^{n}} v$ and $\tau_{a^{n}} v=0$ then $\tau_{a^{2 n}} v=0$, which means by assumption that in fact $u=\tau_{a^{n}} v=0$. Therefore the intersection of U with $V(N)$ is trivial, the projection
from V to V_{N} is injective on U, and τ_{a} is also injective on it. If \mathfrak{m} is a maximal ideal of R, this remains
[noetherian] true for $U / \mathfrak{m} U$, and therefore by σ_{a} is invertible on U. This implies that U is independent of the choice of n. 0
Let $V_{N}^{K_{0}}$ be this common image of the $\tau_{a^{n}}$ for large n. The point is that it splits the canonical projection from $V^{K_{0}}$ to $V_{N}^{M_{0}}$, which turns out to be a surjection.
[jacquetdecomp] Proposition 2.5. The canonical projection from $V_{N}^{K_{0}}$ to $V_{N}^{M_{0}}$ is an isomorphism.
Proof. Suppose given u in $V_{N}^{M_{0}}$. Since M_{0} is compact, we can find v in $V^{M_{0}}$ whose image in V_{N} is u. Suppose that v is fixed also by \bar{N}_{*} for some small \bar{N}_{*}. If we choose b in A_{P}^{--}such that $b \bar{N}_{0} b^{-1} \subseteq \bar{N}_{*}$, then $v_{*}=\delta^{1 / 2}(b) \pi(b) v$ is fixed by $M_{0} \bar{N}_{0}$. Because $K_{0}=N_{0} M_{0} \bar{N}_{0}$, the average of $\pi(n) v_{*}$ over N_{0} is the same as the average of $\pi(k) v_{*}$ over K_{0}. This average lies in $V^{K_{0}}$ and has image $\pi_{N}(b) u$ in V_{N}. But then $\tau_{a} v_{*}$ has image $\delta^{1 / 2}(a) \pi_{N}(a b) u$ in V_{N} and also lies in $V_{N}^{K_{0}}$. Since $\tau_{a b}$ acts invertibly on $V_{N}^{K_{0}}$, we can find $v_{* *}$ in $V_{N}^{K_{0}}$ such that $\tau_{a b} v_{* *}=\tau_{a} \tau_{b} v_{* *}=\tau_{a} v_{*}$, and whose image in V_{N} is u.
As a consequence:
[jacquet-admissible] Theorem 2.6. If (π, V) is an admissible representation of G then $\left(\pi_{N}, V_{N}\right)$ is an admissible representation of M.

Thus whenever K_{0} is a subgroup possessing an Iwahori factorization with respect to P, we have a canonical subspace of $V^{K_{0}}$ projecting isomorphically onto $V^{M_{0}}$. For a given M_{0} there may be many different K_{0} suitable; how does the space $V_{N}^{K_{0}}$ vary with K_{0} ?
[coherence] Lemma 2.7. Let $K_{1} \subseteq K_{0}$ be two compact open subgroups of G possessing an Iwahori factorization with respect to P. If v_{1} in $V_{N}^{K_{1}}$ and v_{0} in $V_{N}^{K_{0}}$ have the same image in V_{N}, then $\pi\left(\mu_{K_{0}}\right) v_{1}=v_{0}$.

3. The canonical pairing

Continue to let K_{0} be a compact open subgroup of G possessing an Iwahori factorization $\bar{N}_{0} M_{0} N_{0}$ with respect to the parabolic subgroup $P,(\pi, V)$ an admissible representation of G. Let N_{*} be a compact open subgroup of N such that $V^{K_{0}} \cap V(N) \subseteq V\left(N_{*}\right)$.
[annihilation] Lemma 3.1. For v in $V_{N}^{K_{0}}, \widetilde{v}$ in $\widetilde{V}^{K_{0}} \cap \widetilde{V}(\bar{N}),\langle v, \widetilde{v}\rangle=0$.
Proof. This follows easily from the fact that $v=\pi\left(T_{a^{n}}\right) u$ for some a in A_{P}^{--}, u in $V^{K_{0}}$, and large n, while $\pi\left(T_{a^{n}}\right) \widetilde{v}=$ for large n.
[asymptotic-pairing] Theorem 3.2. If (π, V is an admissible representation of G, then there exists a unique pairing between V_{N} and $\widetilde{V}_{\bar{N}}$ with the property that whenever v has image u in V_{N} and \widetilde{v} has image \widetilde{u} in $\widetilde{V}_{\bar{N}}$, then for all a in A_{P}^{--}near enough to 0

$$
\langle\pi(a) v, \widetilde{v}\rangle=\delta_{P}^{1 / 2}(a)\left\langle\pi_{N}(a) u, \widetilde{u}\right\rangle
$$

Similarly with the roles of V and \tilde{V} reversed. If the coefficient ring is a field, this pairing gives rise to an isomorphism of $\left(\widetilde{\pi}_{N}, \widetilde{V}_{\bar{N}}\right)$ with the contragredient of the representation $\left(\pi_{N}, V_{N}\right)$.

Proof. Let u in V_{N} and \widetilde{u} in $\widetilde{V}_{\bar{N}}$ be given. Suppose that u and \widetilde{u} are both fixed by elements of M_{0}. Let v be a vector in $V_{N}^{K_{0}}$ with image u, and similarly for \widetilde{v} and \widetilde{u}. Define the pairing by the formula

$$
\langle u, \widetilde{u}\rangle_{\mathrm{can}}=\langle\widetilde{v}, v\rangle .
$$

Qaflalaoometatice] It follows from Lemma 3.1 and Lemma 2.7 that this definition depends only on u and \widetilde{u}, and not on the choices of v and \widetilde{v}. That

$$
\langle\pi(a) v, \widetilde{v}\rangle=\delta_{P}^{1 / 2}(a)\left\langle\pi_{N}(a) u, \widetilde{u}\right\rangle_{\mathrm{can}}
$$

Quflafoolmikatiae] also follows from Lemma 3.1 and Lemma 2.7. That this property characterizes the pairing follows from the invertibility of τ_{a} on $V_{N}^{K_{0}}$. 0
This pairing is called the canonical pairing.

