10:35 a.m. September 23, 2006

Essays on representations of p-adic groups

The Jacquet module

Bill Casselman University of British Columbia cass@math.ubc.ca

In this chapter, we shall associate to every smooth representation π and parabolic subgroup P of G an admissible representation of M_P . These representations turn out to control much of the structure of admissible representations induced from parabolic subgroups, and also to describe the behaviour at infinity on G of the matrix coefficients of π when it is admissible. The origin of most of the results in this section is a lecture of Jacquet's presented at a conference in Montecatini.

1. The Jacquet module

[unipotent-large] Lemma 1.1. If N is a p-adic unipotent group, it possesses arbitrarily large compact open subgroups.

Proof. It is certainly true for the group of unipotent upper triangular matrices in GL_n . Here, if a is the diagonal matrix with $a_{i,i} = \varpi^i$ then conjugation by powers of a will scale any given compact open subgroup to an arbitrarily large one. But any unipotent group can be embedded as a closed subgroup in one of these.

Fix the parabolic subgroup P = MN. If (π, V) is any smooth representation of N, define V(N) to be the subspace of V generated by vectors of the form

$$\pi(n)v - v$$

as n ranges over N. The group N acts trivially on the quotient

$$V_N = V/V(N)$$

It is universal with respect to this property:

[universality] **Proposition 1.2.** The projection from V to V_N induces for every smooth R-representation (σ, U) on which N acts trivially an isomorphism

$$\operatorname{Hom}_N(V, U) \cong \operatorname{Hom}_R(V_N, U)$$
.

[union-vu] Lemma 1.3. The subspace V(N) is also the union of the subspaces V(U) as U varies over the compact open subgroups of N.

[unipotent-large] Proof. Immediately from Lemma 1.1.

[jacquet-exact] Proposition 1.4. If

$$0 \to U \to V \to W \to 0$$

is an exact sequence of smooth representations of *N*, then the sequence

$$0 \to U_N \to V_N \to W_N \to 0$$

is also exact.

Proof. That the sequence

$$U_N \to V_N \to W_N \to 0$$

is exact follows immediately from the definition of V(N). The only non-trivial point is the injectivity of $U_N \to V_N$. If u in U lies in V(N) then it lies in V(S) for some compact open subgroup S of N. **4** [projection] According to Lemma 2.1, the space V has a canonical decomposition

$$V = V^S \oplus V(S) ,$$

and v lies in V(S) if and only if

$$\int_{S} \pi(s) v \, ds = 0$$

But this last equation holds in U as well, since U is stable under S, so v must lie in U(S).

\blacksquare [frobenius] If (π, V) is a smooth representation of *G* and σ a smooth representation of *M*, then **\blacksquare** ells us that

$$\operatorname{Hom}_G(\pi, \operatorname{Ind}(\sigma | P, G)) \cong \operatorname{Hom}_P(\pi, \sigma \delta_P^{-1/2})$$

Since σ is trivial on N, any P-map from V to U factors through V_N . The space V(N) is stable under P, and there is hence a natural representation of M on V_N . The **Jacquet module** of π is this representation twisted by the character $\delta_P^{-1/2}$. This is designed exactly to allow the simplest formulation of this:

[jacquet-frobenius] Proposition 1.5. If (π, V) is any smooth representation of G and (σ, U) one of M then evaluation at 1 induces an isomorphism

 $\operatorname{Hom}_G(\pi, \operatorname{Ind}(\sigma \mid P, G)) \cong \operatorname{Hom}_M(\pi_N, \sigma)$

2. Admissibility of the Jacquet module

Now fix an admissible representation (π, V) of G. Let P, \overline{P} be an opposing pair of parabolic subgroups, K_0 to be a compact open subgroup possessing an Iwahori factorization $K_0 = N_0 M_0 \overline{N}_0$ with respect to this pair. For each a in A_P^{-} let T_a be the smooth distribution

$$\left(rac{1}{\operatorname{meas} K_0}
ight)\mathfrak{char}_{K_0 a K_0}\,dx$$

on *G*. For any smooth representation (π, V) and v in V^{K_0} let τ_a be the restriction of $\pi(T_a)$ to V^{K_0} . Thus for v in V^{K_0} $\tau_a(v) = \pi(T_a) v$

This is valid since the isotropy subgroup of *a* in the action of K_0 acting on $K_0 a K_0 / K_0$ is $a K_0 a^{-1} \cap K_0$, hence

 $k \mapsto kaK_0$

is a bijection of $K_0/K_0 \cap aK_0a^{-1}$ with K_0aK_0/K_0 .

[projection] Lemma 2.1. If v lies in V^{K0} with image u in V_N , then the image of $\tau_a v$ in V_N is equal to $\delta_P^{-1/2}(a)\pi_N(a)u$.

Proof. Since $K_0 = N_0 M_0 \overline{N}_0$, $aK_0 a^{-1} = (aN_0 a^{-1})M_0(aN_0 a^{-1})$. Since $\overline{N} \subseteq a\overline{N}a^{-1}$, the inclusion of N_0/aN_0a^{-1} into $K_0/(aK_0a^{-1} \cap K_0)$ is in turn a bijection. Since the index of aN_0a^{-1} in N_0 or, equivalently, that of N_0 in $a^{-1}N_0a$ is $\delta_P^{-1}(a)$:

$$\tau_a(v) = \sum_{K_0/aK_0a^{-1}\cap K_0} \pi(k)\pi(a)v$$
$$= \sum_{N_0/aN_0a^{-1}} \pi(n)\pi(a)v$$
$$= \pi(a)\sum_{a^{-1}N_0a/N_0} \pi(n)v .$$

Since $\pi(n)v$ and v have the same image in V_N , this concludes the proof.

[tab] Lemma 2.2. For every a, b in A_P^{--} ,

$$\tau_{ab} = \tau_a \tau_b$$

Proof. We have

$$T_{a}T_{b} = \sum_{N_{0}/aN_{0}a^{-1}} \sum_{N_{0}/bN_{0}b^{-1}} \pi(n_{1}\pi(a)\pi(n_{2})\pi(b)v)$$

$$= \sum_{N_{0}/aN_{0}a^{-1}} \sum_{N_{0}/bN_{0}b^{-1}} \pi(n_{1})\pi(an_{2}a^{-1})\pi(ab)v$$

$$= \sum_{N_{0}/abN_{0}b^{-1}a^{-1}} \pi(n)\pi(ab)v$$

$$= T_{ab}$$

since as n_1 ranges over representatives of N_0/aN_0a^{-1} and and n_2 over representatives of N_0/bN_0b^{-1} , the products $n_1 a n_2 a^{-1}$ range over representatives of $N_0/abN_0b^{-1}a^{-1}$.

[kernel-ta] Lemma 2.3. For any a in A_P^{--} the subspace of V^{K_0} on which τ_a acts nilpotently coincides with $V^{K_0} \cap V(N)$.

Proof. Since R is Noetherian and V^{K_0} finitely generated, the increasing sequence

$$\ker(\tau_a) \subseteq \ker(\tau_{a^2}) \subseteq \ker(\tau_{a^3}) \subseteq \dots$$

is eventually stationary. It must be shown that it is the same as $V^{K_0} \cap V(N)$.

Choose *n* large enough so that $V^{K_0} \cap V(N) = V^{K_0} \cap V(a^{-n}N_0a^n)$. Let $b = a^n$. Since

$$au_b v = \pi(b) \sum_{b^{-1} N_0 b / N_0} \pi(n) v$$

and $\tau_b v = 0$ if and only if $\sum_{b^{-1}N_0 b/N_0} \pi(n)v = 0$, and again if and only if v lies in V(N).

- The canonical map from V to V_N takes V^{K_0} to $V_N^{M_0}$. The kernel of this map is $V \cap V(N)$, which by **&** [kernel-ta] Lemma 2.3 is equal to the kernel of τ_{a^n} for large n.
 - [stable] Lemma 2.4. The image of τ_{a^n} in V^{K_0} is independent of n if n is large enough. The map τ_a is invertible on it. The intersection of it with V(N) is trivial.
- ♣ [kernel-ta] *Proof.* Choose *n* so large that $\ker(\tau_{a^n}) = \ker(\tau_{a^m})$ for all $m \ge n$. By Lemma 2.3 this kernel coincides with $V^{K_0} \cap V(N)$. Let *U* be the image of τ_{a^n} . If $u = \tau_{a^n} v$ and $\tau_{a^n} v = 0$ then $\tau_{a^{2n}} v = 0$, which means by assumption that in fact $u = \tau_{a^n} v = 0$. Therefore the intersection of *U* with V(N) is trivial, the projection

from V to V_N is injective on U, and τ_a is also injective on it. If \mathfrak{m} is a maximal ideal of R, this remains **(noetherian)** true for $U/\mathfrak{m}U$, and therefore by \P_a is invertible on U. This implies that U is independent of the choice of n.

Let $V_N^{K_0}$ be this common image of the τ_{a^n} for large n. The point is that it splits the canonical projection from V^{K_0} to $V_N^{M_0}$, which turns out to be a surjection.

[jacquetdecomp] Proposition 2.5. The canonical projection from $V_N^{K_0}$ to $V_N^{M_0}$ is an isomorphism.

Proof. Suppose given u in $V_N^{M_0}$. Since M_0 is compact, we can find v in V^{M_0} whose image in V_N is u. Suppose that v is fixed also by \overline{N}_* for some small \overline{N}_* . If we choose b in A_P^{--} such that $b\overline{N}_0b^{-1} \subseteq \overline{N}_*$, then $v_* = \delta^{1/2}(b)\pi(b)v$ is fixed by $M_0\overline{N}_0$. Because $K_0 = N_0M_0\overline{N}_0$, the average of $\pi(n)v_*$ over N_0 is the same as the average of $\pi(k)v_*$ over K_0 . This average lies in V^{K_0} and has image $\pi_N(b)u$ in V_N . But then $\tau_a v_*$ has image $\delta^{1/2}(a)\pi_N(ab)u$ in V_N and also lies in $V_N^{K_0}$. Since τ_{ab} acts invertibly on $V_N^{K_0}$, we can find v_{**} in $V_N^{K_0}$ such that $\tau_{ab}v_{**} = \tau_a \tau_b v_{**} = \tau_a v_*$, and whose image in V_N is u.

As a consequence:

[jacquet-admissible] Theorem 2.6. If (π, V) is an admissible representation of G then (π_N, V_N) is an admissible representation of M.

Thus whenever K_0 is a subgroup possessing an Iwahori factorization with respect to P, we have a canonical subspace of V^{K_0} projecting isomorphically onto V^{M_0} . For a given M_0 there may be many different K_0 suitable; how does the space $V_N^{K_0}$ vary with K_0 ?

[coherence] Lemma 2.7. Let $K_1 \subseteq K_0$ be two compact open subgroups of G possessing an Iwahori factorization with respect to P. If v_1 in $V_N^{K_1}$ and v_0 in $V_N^{K_0}$ have the same image in V_N , then $\pi(\mu_{K_0})v_1 = v_0$.

3. The canonical pairing

Continue to let K_0 be a compact open subgroup of G possessing an Iwahori factorization $\overline{N}_0 M_0 N_0$ with respect to the parabolic subgroup P, (π, V) an admissible representation of G. Let N_* be a compact open subgroup of N such that $V^{K_0} \cap V(N) \subseteq V(N_*)$.

[annihilation] Lemma 3.1. For v in $V_N^{K_0}$, \tilde{v} in $\tilde{V}^{K_0} \cap \tilde{V}(\overline{N})$, $\langle v, \tilde{v} \rangle = 0$.

Proof. This follows easily from the fact that $v = \pi(T_{a^n})u$ for some a in A_P^{--} , u in V^{K_0} , and large n, while $\pi(T_{a^n})\tilde{v} =$ for large n.

[asymptotic-pairing] **Theorem 3.2.** If $(\pi, V \text{ is an admissible representation of } G$, then there exists a unique pairing between V_N and $\tilde{V}_{\overline{N}}$ with the property that whenever v has image u in V_N and \tilde{v} has image \tilde{u} in $\tilde{V}_{\overline{N}}$, then for all a in A_P^{--} near enough to 0

$$\langle \pi(a)v, \widetilde{v} \rangle = \delta_P^{1/2}(a) \langle \pi_N(a)u, \widetilde{u} \rangle .$$

Similarly with the roles of *V* and \widetilde{V} reversed. If the coefficient ring is a field, this pairing gives rise to an isomorphism of $(\widetilde{\pi}_N, \widetilde{V}_{\overline{N}})$ with the contragredient of the representation (π_N, V_N) .

Proof. Let u in V_N and \tilde{u} in \tilde{V}_N be given. Suppose that u and \tilde{u} are both fixed by elements of M_0 . Let v be a vector in $V_N^{K_0}$ with image u, and similarly for \tilde{v} and \tilde{u} . Define the pairing by the formula

$$\langle u, \widetilde{u} \rangle_{\operatorname{can}} = \langle \widetilde{v}, v \rangle .$$

Angle Complete times] It follows from Lemma 3.1 and Lemma 2.7 that this definition depends only on u and \tilde{u} , and not on the choices of v and \tilde{v} . That

$$\langle \pi(a)v, \widetilde{v} \rangle = \delta_P^{1/2}(a) \langle \pi_N(a)u, \widetilde{u} \rangle_{\operatorname{can}}$$

All accombination] also follows from Lemma 3.1 and Lemma 2.7. That this property characterizes the pairing follows from the invertibility of τ_a on $V_N^{K_0}$.

This pairing is called the **canonical pairing**.