Essays on representations of p-adic groups

The Bruhat filtration

Bill Casselman
University of British Columbia
cass@math.ubc.ca

If P and Q are parabolic subgroups of G then $P \backslash G / Q$ is finite. In this chapter I will

- construct a filtration of the restriction to Q of a representation of G induced from P;
- describe the associated graded representation;
- describe also the graded Jacquet module.

I begin with some abstract considerations.

Contents

1. Smoothly induced representations
2. The Bruhat order
3. The filtration
4. The Jacquet module

1. Smoothly induced representations

In this section suppose P and G to be any locally profinite groups, and p the canonical projection from G onto the quotient $P \backslash G$. Let X be a locally closed P-stable subspace of G of the form $p^{-1}(Y)$, where Y is a locally closed subset of $P \backslash G$. There exist global continuous sections of p, and hence of the restriction of p to X.
Let (σ, U) be a smooth representation of P. Define $\left.\right|_{c}(\sigma \mid P, X)$ to be the space of smooth functions $f: X \rightarrow U$ with compact support modulo P such that

$$
f(p x)=\sigma(p) f(x)
$$

for all x in X, p in P. The condition of compact support means that for every f in the space there exists a compact subset Ω of X with the support of f contained in $P \Omega$.
For any $f \in C_{c}^{\infty}(G, U)$ and x in X, the function $f(p x)$ lies in $C_{c}^{\infty}(P, U)$. Therefore we can integrate to define a new function on X :

$$
\Pi_{\sigma} f(g)=\int_{P} \sigma^{-1}(p) f(p g) d_{r} p
$$

[projections] Proposition 1.1. The map Π_{σ} takes $C_{c}(X, U)$ to $\left.\right|_{c}(\sigma \mid P, X)$ and is surjective.
Proof. If f has support in Ω then $\pi_{\sigma} f$ has support in $P \Omega$, so the support of $\Pi_{\sigma} f$ is certainly compact modulo P.
Now suppose $f C_{c}^{\infty}(X, U)$. It will have support on some compact subset Ω of X, which we may as well assume to be of the form $K \times S$, where K is a compact open subgroup of G and S is the section of an open set in the quotient $Y=P \backslash X$. In showing that $\Pi_{\sigma} f$ lies $\operatorname{ind}_{c}(\sigma \mid P, G)$ we may assume that f is
constant on Ω, say $f(x)=u$ for x in Ω. But then if $F(x)=\Pi_{\sigma} f(x)$ we have for $x=p_{0} s_{0}$ in Ω with p_{0} in K, s_{0} in S :

$$
\begin{aligned}
F(x) & =\int_{P} \sigma^{-1}(p) f(p x) d x \\
& =\int_{p \mid p x \in \Omega} \sigma^{-1}(p) u d x \\
& =\int_{p \mid p p_{0} s_{0} \in K S} \sigma^{-1}(p) u d x \\
& =\int_{p \mid p \in K} \sigma^{-1}(p) u d x
\end{aligned}
$$

which is independent of x. Therefore Π_{σ} is a map from $C_{c}(X, U)$ to $\left.\right|_{c}(\sigma \mid P, X)$.
The same calculation shows that Π_{σ} is surjective, if we choose K small enough to fix u.
[ind-excision] Corollary 1.2. If Y is a P-stable closed subset of X then

$$
\left.\left.\left.0 \rightarrow\right|_{c}(\sigma \mid P, X-Y) \rightarrow\right|_{c}(\sigma \mid P, X) \rightarrow\right|_{c}(\sigma \mid P, Y) \rightarrow 0
$$

is exact.
$\$$ [excision] Proof. Only the final surjectivity is non-trivial. It follows from and the previous Proposition.
Much more elementary:
[ind-components] Lemma 1.3. If X is the finite union of disjoint closed P-stable subsets X_{i} then restriction induces an isomorphism of $\left.\right|_{c}(\sigma \mid P, X)$ with the direct sum of the subspaces $\left.\right|_{c}\left(\sigma \mid P, X_{i}\right)$.
Now let Q and N be closed subgroups of P. Assume that N is normal in $P, Q N$ closed in P, and that N has arbitrarily large compact open subgroups. This implies that N is unimodular, since δ must be trivial on each one of these compact groups. Let $\delta=\delta_{Q \cap N \backslash N}$ be the modulus character of Q acting on the quotient $Q \cap N \backslash N$. Since $Q \cap N$ also has arbitrarily large compact open subgroups, $Q \cap N$ is unimodular so that the restriction of δ to the normal subgroup $Q \cap N$ is trivial.
If (σ, U) is a smooth representation of Q, let $u \mapsto \bar{u}$ be the canonical projection onto the Jacquet module $U_{Q \cap N}$. Since any f in $\left.\right|_{c}(\sigma \mid Q, P)$ has compact support modulo Q, for any p in P the function $R_{p} f$ restricted to N has compact support modulo $Q \cap N$. For any q in $Q \cap N, n$ in N, p in P we have

$$
\overline{f(q n p)}=\overline{\sigma(q) f(n p)}=\overline{f(n p)}
$$

Therefore the integral

$$
\bar{f}(p)=\int_{Q \cap N \backslash N} \overline{f(n p)} d n
$$

is well defined. Its definition depends only on a choice of measure on $Q \cap N \backslash N$, and is otherwise canonical. The function $\bar{f}(p)$ maps P into $U_{Q \cap N}$.
[abstract-jacquet] Proposition 1.4. If (σ, U) is a smooth representation of Q then the map $f \mapsto \bar{f}$ induces an isomorphism

$$
\left.\left.\right|_{c}(\sigma \mid Q, P)_{N} \cong\right|_{c}\left(\sigma_{Q \cap N} \delta_{Q \cap N \backslash N} \mid Q N / N, P / N\right)
$$

Keep in mind that $Q N / N \cong Q / Q \cap N$.
Proof. A change of variable in the integral defining \bar{f} shows that $\bar{f}(n p)=\bar{f}(p)$ for all p in P, since N is unimodular. Thus \bar{f} may be identified with a function on P / N.

For q in Q we have

$$
\begin{aligned}
\bar{f}(q p) & =\int_{Q \cap N \backslash N} \overline{f(n q p)} d n \\
& =\int_{Q \cap N \backslash N} \overline{f\left(q q^{-1} n q p\right)} d n \\
& =\delta(q) \int_{Q \cap N \backslash N} \overline{\sigma(q) f(n p)} d n \\
& =\sigma_{Q \cap N}(q) \delta(q) \bar{f}(p) .
\end{aligned}
$$

If f has support on $Q \Omega$ then \bar{f} has support on $Q N \Omega$. Therefore $f \mapsto \bar{f}$ is a map from $\left.\right|_{c}(\sigma \mid Q, P)_{N}$ to $\left.\right|_{c}\left(\sigma_{Q \cap N} \delta \mid Q N / N, P / N\right)$.
It must be shown that for each compact open subgroup K of P the map $f \mapsto \bar{f}$ induces an isomorphism

$$
\left.\left.\right|_{c}(\sigma \mid Q, P)_{N}^{K} \cong\right|_{c}\left(\sigma_{Q \cap N} \delta \mid Q N / N, P / N\right)^{K}
$$

The subspace $\left.\right|_{c}(\sigma \mid Q, P)^{K}$ is the direct sum of the subspaces of functions with support on the double cosets $Q x K$ which are right invariant with respect to K. Since $Q x K=Q x K x^{-1} x$, right multiplication by x identifies this with the subspace of functions on $Q x K x^{-1}$ invariant under $x K x^{-1}$. Similarly for the space $\mid{ }_{c}\left(\sigma_{Q \cap N} \delta \mid Q N / N, P / N\right)^{K}$. The map $f \mapsto \bar{f}$ takes functions with support on $Q x K$ to those with support on $Q N x K$. Therefore we are reduced to showing that $f \mapsto \bar{f}$ induces an isomorphism

$$
\begin{aligned}
\left\{f \in C_{c}^{\infty}(Q K, U) \mid\right. & f(q k)=\sigma(q) f(1)\}_{N} \\
& \cong\left\{f \in C^{\infty}\left(Q N K, U_{Q \cap N}\right) \mid f(q n k)=\sigma_{Q \cap N}(q) f(1)\right\}
\end{aligned}
$$

The space $\left\{f \in C_{c}^{\infty}(Q K, U) \mid f(q k)=\sigma(q) f(1)\right\}$ may be identified with $U^{Q \cap K}$, while the space $\{f \in$ $\left.C^{\infty}\left(Q N K, U_{Q \cap N}\right) \mid f(q n k)=\sigma_{Q \cap N}(q) f(1)\right\}$ may be identified with $U_{Q \cap N}^{Q \cap K}$. It only remains to show that in terms of these identifications $f \mapsto \bar{f}$ translates to some multiple of the canonical projection from $U^{Q \cap K}$ to $U_{Q \cap N}$. Hence we must calculate \bar{f} when

$$
f(p)= \begin{cases}\sigma(q) u & \text { if } p=q k \\ 0 & \text { otherwise }\end{cases}
$$

and show that $\bar{f}(1)$ is the canonical projection of $f(1)$. But

$$
\begin{aligned}
\bar{f}(1) & =\int_{Q \cap N \backslash K Q \cap N} \overline{f(\nu n)} d n \\
& =\int_{K \cap Q \cap N \backslash K \cap N} \overline{f(n)} d n \\
& =\operatorname{const} \overline{f(1)}
\end{aligned}
$$

2. The Bruhat order

If P and Q are any two parabolic subgroups then G is a finite disjoint union of double cosets $P x Q$. These double cosets and the closure relations among them can be parametrized in terms of the Weyl group.
Fix a minimal parabolic subgroup P_{\emptyset}, and a maximal split torus A_{\emptyset} contained in it, and let W be the corresponding Weyl group, Δ the basis of positive roots determined by the choice of P_{\emptyset}.

For any subsets Θ, Ω in $\Delta, P_{\Theta} \backslash G / P_{\Omega}$ is the disjoint union of cosets $P_{\Theta} x P_{\Omega}$ as x ranges over representatives of $W_{\Theta} \backslash W / W_{\Omega}$, which we can choose from among the particular representatives [$W_{\Theta} \backslash W / W_{\Omega}$]. We define a partial order on the double cosets $P \backslash G / Q$ according to which $P x Q \leq P y Q$ if and only if $P x Q \subseteq \overline{P y Q}$. This is called the Bruhat order. What does it translate to in terms of W ?
We answer this first for $\Theta=\Omega=\emptyset$. For each x in W let $C(x)$ be the double coset $P_{\emptyset} x P_{\emptyset}$. For x and y in W, we say that $x \leq y$ when y has a reduced expression

$$
y=s_{1} s_{2} \ldots s_{n}
$$

and

$$
x=s_{i_{1}} s_{i_{2}} \ldots s_{i_{r}}
$$

is a product, in order, of a subsequence of the s_{i}. In these circumstances

$$
\begin{aligned}
& C(y)=C\left(s_{1}\right) C\left(s_{2}\right) \ldots C\left(s_{n}\right) \\
& \overline{C(y)}=\overline{C\left(s_{1}\right)} \overline{C\left(s_{2}\right)} \ldots \overline{C\left(s_{n}\right)}
\end{aligned}
$$

and since

$$
\begin{gathered}
\overline{C(s)}=\{1\} \cup C(s) \\
C(x) \subseteq \overline{C(y)} .
\end{gathered}
$$

[bruhat-closure] Proposition 2.1. The closure of $C(y)$ is the union of all the $C(x)$ for $x \leq y$ in W.
Therefore if x and y lie in $\left[W_{\Theta} \backslash W / W_{\Omega}\right]$, then $P_{\emptyset} x P_{\emptyset} \leq P_{\emptyset} y P_{\emptyset}$ if and only if $y \leq x$ where the order is that whereby $x \leq y$ if and only if y has a reduced expression and x is a product $s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ for some sequence $i_{1}<i_{2}<\ldots \leq i_{k}$.
More generally:
[parabolic-bruhat-order] Proposition 2.2. If x lies in $\left[W_{\Theta} \backslash W\right]$ and y is the element of smallest length in $\left[W_{\Theta} x w_{\ell, \Omega}\right.$], then the closure of $P_{\emptyset} w_{\ell, \Theta} y P_{\emptyset}$ is the same as the closure of $P_{\Theta} x P_{\Omega}$.
Proof. 0
Algorithm to determine closures? Product relations for N_{w} ?

3. The filtration

Throughout the rest of this chapter, fix a parabolic subgroup P of G and a smooth representation (π, V) of M_{P}. In the first section I will construct for every parabolic subgroup Q of G a filtration of $\operatorname{Ind}(\sigma \mid P, G)$ as a representation of Q. In the second I shall describe the Jacquet module of each graded term associated to this filtration.
[pq] Lemma 3.1. If P and Q are both parabolic subgroups of G, then the image of $Q \cap P$ in P / N_{P} is also one, with unipotent radical equal to the image of $N_{Q} \cap P$.
Let $M_{P, Q}$ be the reductive factor of the image of $P \cap Q$ in P / N_{P}. It is the same as the reductive factor of $P \cap Q$, so that $M_{P, Q}$ and $M_{Q, P}$ are canonically isomorphic.

Describe it explicitly in terms of $\Theta \subseteq \Delta: M_{\Theta \cap \Psi}$, unipotent radical $N_{P, Q}$.
Now P and Q are both parabolic subgroups, as is $x Q x^{-1}$. The image of $x Q x^{-1}$ in P / N_{P} is also a parabolic.
Suppose P and Q to be parabolic subgroups of G. Let (σ, U) be a smooth representation of P / N_{P}, and for the moment let

$$
I=\operatorname{Ind}(\sigma \mid P, G)
$$

If X is any union of double cosets in G, let I_{X} be $\operatorname{Ind}_{c}(\sigma \mid P, X)$. For example, if X is open in G then I_{X} is the subspace of function in I with support in X. Let $X_{\min }$ be the union of closed $P \times Q$ cosets in X.
\& [ind-excision] Then $X-X_{\text {min }}$ is open in X and Corollary 1.2 asserts that

$$
0 \rightarrow I_{X-X_{\min }} \rightarrow I_{X} \rightarrow I_{X_{\min }} \rightarrow 0
$$

is exact.
Furthermore $I_{X_{\min }}$ is the direct sum of spaces I_{Y} as Y ranges over the $P \times Q$ cosets in $X_{\text {min }}$.

4. The Jacquet module

Suppose $X=P x Q$ is a single double coset in G. What is the Jacquet module of the representation of Q on $\operatorname{Ind}_{c}(\sigma \mid P, P x Q)$? The image of $x Q x^{-1} \cap P$ in P / N_{P} is a parabolic subgroup R; let S be the image of $x^{-1} P x \cap Q$ in Q / N_{Q}. Then conjugation by x^{-1} induces an isomorphism of M_{R} with M_{S}.

For f in $\operatorname{Ind}_{c}(\sigma \mid P, P x Q)$ we define

$$
\bar{f}(q)=\int_{N_{Q} \cap x^{-1} P x \backslash N_{Q}} \overline{f(x n q)} d n
$$

where $u \mapsto \bar{u}$ is the canonical projection from U to $U_{N_{R}}$.
[jacquet-induced] Theorem 4.1. The map $f \mapsto \bar{f}$ induces an isomorphism

$$
\operatorname{Ind}_{c}(\sigma \mid P, P x Q)_{N_{Q}} \cong \operatorname{Ind}\left(x^{-1} \sigma_{N_{R}} \mid S, M_{Q}\right)
$$

\& [abstract-jacquet] Proof. This follows from Proposition 1.4, since multiplication by x and restriction to Q give

$$
\left.\left.\right|_{c}\left(\sigma \mid x^{-1} P x \cap Q, Q\right) \cong\right|_{c}\left(x^{-1} \sigma \mid P \cap x Q x^{-1}, x Q x^{-1}\right)
$$

We just have to get the δ factor correct.
In certain circumstances the expressions in this can be calculated explicitly, and then this gives a usable formula for the pairing.

