10:58 a.m. September 23, 2006

Essays on representations of p-adic groups

The Bruhat filtration

Bill Casselman University of British Columbia cass@math.ubc.ca

If *P* and *Q* are parabolic subgroups of *G* then $P \setminus G/Q$ is finite. In this chapter I will

- construct a filtration of the restriction to *Q* of a representation of *G* induced from *P*;
- describe the associated graded representation;
- describe also the graded Jacquet module.

I begin with some abstract considerations.

Contents

- 1. Smoothly induced representations
- 2. The Bruhat order
- 3. The filtration
- 4. The Jacquet module

1. Smoothly induced representations

In this section suppose P and G to be any locally profinite groups, and p the canonical projection from G onto the quotient $P \setminus G$. Let X be a locally closed P-stable subspace of G of the form $p^{-1}(Y)$, where Y is a locally closed subset of $P \setminus G$. There exist global continuous sections of p, and hence of the restriction of p to X.

Let (σ, U) be a smooth representation of *P*. Define $|_{c}(\sigma | P, X)$ to be the space of smooth functions $f: X \to U$ with compact support modulo *P* such that

$$f(px) = \sigma(p)f(x)$$

for all x in X, p in P. The condition of compact support means that for every f in the space there exists a compact subset Ω of X with the support of f contained in $P\Omega$.

For any $f \in C_c^{\infty}(G, U)$ and x in X, the function f(px) lies in $C_c^{\infty}(P, U)$. Therefore we can integrate to define a new function on X:

$$\Pi_{\sigma} f(g) = \int_{P} \sigma^{-1}(p) f(pg) \, d_{r} p$$

[projections] **Proposition 1.1.** The map Π_{σ} takes $C_c(X, U)$ to $|_c(\sigma | P, X)$ and is surjective.

Proof. If *f* has support in Ω then $\pi_{\sigma}f$ has support in $P\Omega$, so the support of $\Pi_{\sigma}f$ is certainly compact modulo *P*.

Now suppose $f C_c^{\infty}(X, U)$. It will have support on some compact subset Ω of X, which we may as well assume to be of the form $K \times S$, where K is a compact open subgroup of G and S is the section of an open set in the quotient $Y = P \setminus X$. In showing that $\prod_{\sigma} f$ lies in $\operatorname{Ind}_c(\sigma \mid P, G)$ we may assume that f is

constant on Ω , say f(x) = u for x in Ω . But then if $F(x) = \prod_{\sigma} f(x)$ we have for $x = p_0 s_0$ in Ω with p_0 in K, s_0 in S:

$$F(x) = \int_{P} \sigma^{-1}(p) f(px) dx$$
$$= \int_{p \mid px \in \Omega} \sigma^{-1}(p) u dx$$
$$= \int_{p \mid pp_0 s_0 \in KS} \sigma^{-1}(p) u dx$$
$$= \int_{p \mid p \in K} \sigma^{-1}(p) u dx$$

which is independent of *x*. Therefore Π_{σ} is a map from $C_c(X, U)$ to $|_c(\sigma | P, X)$.

The same calculation shows that Π_{σ} is surjective, if we choose *K* small enough to fix *u*.

[ind-excision] **Corollary 1.2.** If *Y* is a *P*-stable closed subset of *X* then

$$0 \to |_{c}(\sigma | P, X - Y) \to |_{c}(\sigma | P, X) \to |_{c}(\sigma | P, Y) \to 0$$

is exact.

Figure [excision] Proof. Only the final surjectivity is non-trivial. It follows from and the previous Proposition.

Much more elementary:

[ind-components] Lemma 1.3. If X is the finite union of disjoint closed P-stable subsets X_i then restriction induces an isomorphism of $|_c(\sigma | P, X)$ with the direct sum of the subspaces $|_c(\sigma | P, X_i)$.

Now let Q and N be closed subgroups of P. Assume that N is normal in P, QN closed in P, and that N has arbitrarily large compact open subgroups. This implies that N is unimodular, since δ must be trivial on each one of these compact groups. Let $\delta = \delta_{Q \cap N \setminus N}$ be the modulus character of Q acting on the quotient $Q \cap N \setminus N$. Since $Q \cap N$ also has arbitrarily large compact open subgroups, $Q \cap N$ is unimodular so that the restriction of δ to the normal subgroup $Q \cap N$ is trivial.

If (σ, U) is a smooth representation of Q, let $u \mapsto \overline{u}$ be the canonical projection onto the Jacquet module $U_{Q \cap N}$. Since any f in $|_{c}(\sigma | Q, P)$ has compact support modulo Q, for any p in P the function $R_{p}f$ restricted to N has compact support modulo $Q \cap N$. For any q in $Q \cap N$, n in N, p in P we have

$$\overline{f(qnp)} = \overline{\sigma(q)f(np)} = \overline{f(np)}$$

Therefore the integral

$$\overline{f}(p) = \int_{Q \cap N \setminus N} \overline{f(np)} \, dn$$

is well defined. Its definition depends only on a choice of measure on $Q \cap N \setminus N$, and is otherwise canonical. The function $\overline{f}(p)$ maps P into $U_{Q \cap N}$.

[abstract-jacquet] **Proposition 1.4.** If (σ, U) is a smooth representation of Q then the map $f \mapsto \overline{f}$ induces an isomorphism

$$|_{c}(\sigma | Q, P)_{N} \cong |_{c}(\sigma_{Q \cap N} \delta_{Q \cap N \setminus N} | QN/N, P/N) .$$

Keep in mind that $QN/N \cong Q/Q \cap N$.

Proof. A change of variable in the integral defining \overline{f} shows that $\overline{f}(np) = \overline{f}(p)$ for all p in P, since N is unimodular. Thus \overline{f} may be identified with a function on P/N.

For q in Q we have

$$\overline{f}(qp) = \int_{Q \cap N \setminus N} \overline{f(nqp)} \, dn$$
$$= \int_{Q \cap N \setminus N} \overline{f(q \, q^{-1}nq \, p)} \, dn$$
$$= \delta(q) \int_{Q \cap N \setminus N} \overline{\sigma(q)} \overline{f(np)} \, dn$$
$$= \sigma_{Q \cap N}(q) \delta(q) \overline{f}(p) \; .$$

If *f* has support on $Q\Omega$ then \overline{f} has support on $QN\Omega$. Therefore $f \mapsto \overline{f}$ is a map from $|_{c}(\sigma | Q, P)_{N}$ to $|_{c}(\sigma_{Q \cap N}\delta | QN/N, P/N)$.

It must be shown that for each compact open subgroup K of P the map $f \mapsto \overline{f}$ induces an isomorphism

 $|_{c}(\sigma | Q, P)_{N}^{K} \cong |_{c}(\sigma_{Q \cap N}\delta | QN/N, P/N)^{K}.$

The subspace $|_{c}(\sigma | Q, P)^{K}$ is the direct sum of the subspaces of functions with support on the double cosets QxK which are right invariant with respect to K. Since $QxK = QxKx^{-1}x$, right multiplication by x identifies this with the subspace of functions on $QxKx^{-1}$ invariant under xKx^{-1} . Similarly for the space $|_{c}(\sigma_{Q\cap N}\delta | QN/N, P/N)^{K}$. The map $f \mapsto \overline{f}$ takes functions with support on QxK to those with support on QNxK. Therefore we are reduced to showing that $f \mapsto \overline{f}$ induces an isomorphism

$$\{f \in C_c^{\infty}(QK, U) \mid f(qk) = \sigma(q)f(1)\}_N$$
$$\cong \{f \in C^{\infty}(QNK, U_{Q\cap N}) \mid f(qnk) = \sigma_{Q\cap N}(q)f(1)\}.$$

The space $\{f \in C_c^{\infty}(QK, U) | f(qk) = \sigma(q)f(1)\}$ may be identified with $U^{Q \cap K}$, while the space $\{f \in C^{\infty}(QNK, U_{Q \cap N}) | f(qnk) = \sigma_{Q \cap N}(q)f(1)\}$ may be identified with $U^{Q \cap K}_{Q \cap N}$. It only remains to show that in terms of these identifications $f \mapsto \overline{f}$ translates to some multiple of the canonical projection from $U^{Q \cap K}$ to $U_{Q \cap N}$. Hence we must calculate \overline{f} when

$$f(p) = \begin{cases} \sigma(q)u & \text{if } p = qk\\ 0 & \text{otherwise} \end{cases}$$

and show that $\overline{f}(1)$ is the canonical projection of f(1). But

$$\overline{f}(1) = \int_{Q \cap N \setminus KQ \cap N} \overline{f(\nu n)} \, dn$$
$$= \int_{K \cap Q \cap N \setminus K \cap N} \overline{f(n)} \, dn$$
$$= \operatorname{const} \overline{f(1)} \, .$$

2. The Bruhat order

If P and Q are any two parabolic subgroups then G is a finite disjoint union of double cosets PxQ. These double cosets and the closure relations among them can be parametrized in terms of the Weyl group.

Fix a minimal parabolic subgroup P_{\emptyset} , and a maximal split torus A_{\emptyset} contained in it, and let W be the corresponding Weyl group, Δ the basis of positive roots determined by the choice of P_{\emptyset} .

For any subsets Θ , Ω in Δ , $P_{\Theta} \backslash G/P_{\Omega}$ is the disjoint union of cosets $P_{\Theta}xP_{\Omega}$ as x ranges over representatives of $W_{\Theta} \backslash W/W_{\Omega}$, which we can choose from among the particular representatives $[W_{\Theta} \backslash W/W_{\Omega}]$. We define a partial order on the double cosets $P \backslash G/Q$ according to which $PxQ \leq PyQ$ if and only if $PxQ \subseteq \overline{PyQ}$. This is called the **Bruhat order**. What does it translate to in terms of W?

We answer this first for $\Theta = \Omega = \emptyset$. For each x in W let C(x) be the double coset $P_{\emptyset}xP_{\emptyset}$. For x and y in W, we say that $x \leq y$ when y has a reduced expression

$$y = s_1 s_2 \dots s_n$$

and

 $x = s_{i_1} s_{i_2} \dots s_{i_r}$

is a product, in order, of a subsequence of the s_i . In these circumstances

$$C(y) = C(s_1)C(s_2)\dots C(s_n)$$

$$\overline{C(y)} = \overline{C(s_1)}\overline{C(s_2)}\dots \overline{C(s_n)}$$

and since

$$\overline{C(s)} = \{1\} \cup C(s)$$
$$C(x) \subseteq \overline{C(y)} .$$

[bruhat-closure] **Proposition 2.1.** The closure of C(y) is the union of all the C(x) for $x \leq y$ in W.

Therefore if x and y lie in $[W_{\Theta} \setminus W/W_{\Omega}]$, then $P_{\emptyset}xP_{\emptyset} \leq P_{\emptyset}yP_{\emptyset}$ if and only if $y \leq x$ where the order is that whereby $x \leq y$ if and only if y has a reduced expression and x is a product $s_{i_1}s_{i_2}\ldots s_{i_k}$ for some sequence $i_1 < i_2 < \ldots \leq i_k$.

More generally:

[parabolic-bruhat-order] Proposition 2.2. If x lies in $[W_{\Theta} \setminus W]$ and y is the element of smallest length in $[W_{\Theta} x w_{\ell,\Omega}]$, then the closure of $P_{\emptyset} w_{\ell,\Theta} y P_{\emptyset}$ is the same as the closure of $P_{\Theta} x P_{\Omega}$.

Proof. 🚺

Algorithm to determine closures? Product relations for N_w ?

3. The filtration

Throughout the rest of this chapter, fix a parabolic subgroup P of G and a smooth representation (π, V) of M_P . In the first section I will construct for every parabolic subgroup Q of G a filtration of $\text{Ind}(\sigma | P, G)$ as a representation of Q. In the second I shall describe the Jacquet module of each graded term associated to this filtration.

[pq] Lemma 3.1. If *P* and *Q* are both parabolic subgroups of *G*, then the image of $Q \cap P$ in P/N_P is also one, with unipotent radical equal to the image of $N_Q \cap P$.

Let $M_{P,Q}$ be the reductive factor of the image of $P \cap Q$ in P/N_P . It is the same as the reductive factor of $P \cap Q$, so that $M_{P,Q}$ and $M_{Q,P}$ are canonically isomorphic.

Describe it explicitly in terms of $\Theta \subseteq \Delta$: $M_{\Theta \cap \Psi}$, unipotent radical $N_{P,Q}$.

Now P and Q are both parabolic subgroups, as is xQx^{-1} . The image of xQx^{-1} in P/N_P is also a parabolic.

Suppose *P* and *Q* to be parabolic subgroups of *G*. Let (σ, U) be a smooth representation of P/N_P , and for the moment let

$$I = \operatorname{Ind}(\sigma \,|\, P, G) \;.$$

If X is any union of double cosets in G, let I_X be $\operatorname{Ind}_c(\sigma \mid P, X)$. For example, if X is open in G then I_X is the subspace of function in I with support in X. Let X_{\min} be the union of closed $P \times Q$ cosets in X.

& [ind-excision] Then $X - X_{\min}$ is open in X and Corollary 1.2 asserts that

$$0 \to I_{X-X_{\min}} \to I_X \to I_{X_{\min}} \to 0$$

is exact.

Furthermore $I_{X_{\min}}$ is the direct sum of spaces I_Y as Y ranges over the $P \times Q$ cosets in X_{\min} .

4. The Jacquet module

Suppose X = PxQ is a single double coset in G. What is the Jacquet module of the representation of Q on $\operatorname{Ind}_c(\sigma \mid P, PxQ)$? The image of $xQx^{-1} \cap P$ in P/N_P is a parabolic subgroup R; let S be the image of $x^{-1}Px \cap Q$ in Q/N_Q . Then conjugation by x^{-1} induces an isomorphism of M_R with M_S .

For f in $\operatorname{Ind}_c(\sigma \mid P, PxQ)$ we define

$$\overline{f}(q) = \int_{N_Q \cap x^{-1} P x \setminus N_Q} \overline{f(xnq)} \, dn$$

where $u \mapsto \overline{u}$ is the canonical projection from U to U_{N_R} .

[jacquet-induced] **Theorem 4.1.** The map $f \mapsto \overline{f}$ induces an isomorphism

$$\operatorname{Ind}_c(\sigma \mid P, PxQ)_{N_Q} \cong \operatorname{Ind}(x^{-1}\sigma_{N_R} \mid S, M_Q)$$

\clubsuit [abstract-jacquet] *Proof.* This follows from Proposition 1.4, since multiplication by x and restriction to Q give

$$|_{c}(\sigma | x^{-1}Px \cap Q, Q) \cong |_{c}(x^{-1}\sigma | P \cap xQx^{-1}, xQx^{-1}).$$

We just have to get the δ factor correct.

In certain circumstances the expressions in this can be calculated explicitly, and then this gives a usable formula for the pairing.