CONTINUITY AND IRRATIONAL
NUMBERS.

Y attention was first directed toward the consid-
erations which form the subject of this pam-

phlet in the autumn of 1858. As professor in the
Polytechnic School in Ziirich I found myself for the
first time obliged to lecture upon the elements of the
differential calculus and felt more keenly than ever
before the lack of a really scientific foundation for
arithmetic. In discussing the notion of the approach
of a variable magnitude to a fixed limiting value, and
especially in proving the theorem that every magnitude
which grows continually, but not beyond all limits,
must certainly approach a limiting value, I had re-
course to geometric evidences. Even now such resort
to geometric intuition in a first presentation of the
differential calculus, I regard as exceedingly useful,
from the didactic standpoint, and indeed indispens-
able, if one does not wish to lose too much time. But
that this form of introduction into the differential cal-
culus can make no claim to being scientific, no one
will deny. For myself this feeling of dissatisfaction
was so overpowering that I made the fixed resolve to
keep meditating on the question till I should find a
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purely arithmetic and perfectly rigorous foundation
for the principles of infinitesimal analysis. The state-
ment is so frequently made that the differential cal-
culus deals with continuous magnitude, and yet an
explanation of this continuity is nowhere given; even
the most rigorous expositions of the differential cal-
culus do not base their proofs upon continuity but,
with more or less consciousness of the fact, they
either appeal to geometric notions or those suggested
by geometry, or depend upon theorems which are
never established in a purely arithmetic manner.
Among these, for example, belongs the above-men-
tioned theorem, and a more careful investigation con-
vinced me that this theorem, or any one equivalent to
it, can be regarded in some way as a sufficient basis
for infinitesimal analysis. It then only remained to
discover its true origin in the elements of arithmetic
and thus at the same time to secure a real definition

. of the essence of continuity. I succeeded Nov. 24,

1858, and a few days afterward I communicated the
results of my meditations to my dear friend Durdge
with whom I had a long and lively discussion. Later
I explained these views of a scientific basis of arith-
metic to a few of my pupils, and here in Braun-
schweig read a paper upon the subject before the sci-
entific club of professors, but I could not make up
my mind to its publication, because, in the first place,
the presentation did not seem altogether simple, and
further, the theory itself had little promise. Never-
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theless I had already half determined to select this
theme as subject for this occasion, when a few days
ago, March 14, by the kindness of the author, the
paper Die Elemente der Funktionenlehre by E. Heine
(Crelle's Journal, Vol. 74) came into my hands and
confirmed me in my decision. In the main I fully
agree with the substance of this memoir, and in-
deed I could hardly do otherwise, but I will frankly
acknowledge that my own presentation seems to me
to be simpler in form and to bring out the vital point
more clearly. While writing this preface (March 20,
1872), T am just in receipt of the‘interesting paper
Ueber die Ausdehnung eines Satzes aus der Theorie der
trﬂg‘mmﬁdriu}zm Reihen, by G. Cantor (Math. Annalen,
Vol. 5), for which I owe the ingenious author my
hearty thanks. As I find on a hasty perusal, the ax-
iom given in Section II. of that paper, aside from the
form of presentation, agrees with what I designate
in Section III. as the essence of continuity. But what
advantage will be gained by even a purely abstract
definition of real numbers of a higher type, I am as
yet unable to see, conceiving as I do of the domain
of real numbers as complete in itself.

L
PROPERTIES OF RATIONAL NUMBERS.

The development of the arithmetic of rational
numbers is here presupposed, but still I think it
worth while to call attention to certain important
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matters without discussion, so as to show at the out-
set the standpoint assumed in what follows. I regard
the whole of arithmetic as a necessary, or at least nat-
ural, consequence of the simplest arithmetic act, that
of counting, and counting itself as nothing else than
the successive creation of the infinite series of positive
integers in which each individual is defined by the
one immediately preceding; the simplest act is the
passing from an already-formed individual to the con-
secutive new one to be formed. The chain of these
numbers forms in itself an exceeuingly useful instru-
ment for the human mind; it presents an inexhaustible
wealth of remarkable laws obtained by the introduc-
tion of the four fundamental operations of arithmetic.
Addition is the combination of any arbitrary repeti-
tions of the above-mentioned simplest act into a sin-
gle act; from it in a similar way arises multiplication.
While the performance of these two operations is al-
ways possible, that of the inverse operations, subtrac-
tion and division, proves' to be limited. Whatever the
immediate occasion may have been, whatever com-
parisons or analogies with experience, or intuition,
may have led thereto; it is certainly true that just
this limitation in performing the indirect operations
has in each case been the real motive for a new crea-
tive act; thus negative and fractional numbers have
been created by the human mind ; and in the system
of all rational numbers there has been gained an in-
strument of infinitely greater perfection. This system,
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which I shall denote by R, possesses first of all a com-
pleteness and self-containedness which I have desig-
nated in another place* as characteristic of a dody of
numbers [Zahlkdrper] and which consists in this that
the four fundamental'operations are always perform-
able with any two individuals in &, i. e., the result is
always an individual of &, the single case of division
by the number zero being excepted.

For our immediate purpose, however, another
property of the system & is still more important ; it
may be expressed by saying that the system R forms
a well-arranged domain of one dimension extending

to infinity on two opposite sides. What is meant by

this is sufficiently indicatedrby my use of expressions
borrowed from geometric ideas; but just for this rea-
son it will be necessary to bring out clearly the corre-
sponding purely arithmetic properties in order to
avoid even the appearance as if arithmetic were in
need of ideas foreign to it.

To express that the symbols a and 4 represent one
and the same rational number we put =24 as well as
é=a. The fact that two rational numbers a, & are
different appears in this that the difference a—4 has
either a positive or negative value. In the former
case ¢ is said to be greater than &, 4 Jess than a; this
is also indicated by the symbols ¢> 4, $<<a.t Asin
the latter case 4—a has a positive value it follows

*Vorlesungen iiber Zahlentheorie, by P. G. Lejeune Dirichlet. 2d ed. § 159.

t Hence in what follows the so-called **algebraic " greater and less are
understood unless the word ** absolute '’ is added.
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that 4>a, a<<4. In regard to these two ways in
which two numbers may differ the following laws will
hold:

L If a>4, and 4>¢, then a>¢. Whenever a,
¢ are two different (or unequal) numbers, and 4 is
greater than the one and less than the other, we shall,
without hesitation because of the suggestion of geo-
metric ideas, express this briefly by saying: & lies be-
tween the two numbers a, ¢.

1. If @, ¢ are two different numbers, there are in-
finitely many different numbers lying between a, e.

. If ais any definite’ number, then all numbers
of the system R fall into two classes, 4; and A4s, each
of which contains infinitely many individuals ; the first
class 4; comprises all numbers ay that are <<a, the
second class 43 comprises all numbers a; that are
> a; the number « itself may be assigned at pleasure
to the first or second class, being respectively the
greatest number of the first class or the least of the
second. In every case the separation of the system
R into the two classes 4;, 43 is such that every num-
ber of the first class 4 is less than every number of
the second class Ag.

II.

COMPARISON OF THE RATIONAL NUMBERS WITH
THE POINTS OF A STRAIGHT LINE.

The above-mentioned properties of rational num-
bers recall the corresponding relations of position of
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the points of a straight line Z. If the two opposite
directions existing upon it are distinguished by
‘¢right” and ¢‘left,” and p, ¢ are two different points,
then either p lies to the right of ¢, and at the same
time ¢ to the left of #, or conversely ¢ lies to the right
of p and at the same time p to the left of ¢. A third
case is impossible, if g, ¢ are actually different points.
In regard to this difference in position the following
laws hold:

1. If p lies to the right of ¢, and ¢ to the right of
7, then # lies to the right of »; and we say that ¢ lies
between the points p and 7.

1. If p, » are two different points, then there al-

B

ways exist infinitely many points that lie between 2
and 7. 5

n1. If g is a definite point in Z, then all points in
L fall into two classes, P;, Ps, each of which contains
infinitely many individuals ; the first class 7; contains
all the points #y, that lie to the left of p, and the sec-
ond class P, contains all the points gy that lie to the
right of p; the point p itself may be assigned at pleas-
ure to the first or second class. In every case the
separation of the straight line Z into the two classes
or portions Py, P, is of such a character that every
point of the first class /7 lies to the left of every point
of the second class Pj.

This analogy between rational numbers and the
points of a straight line, as is well known, becomes a
real correspondence when we select upon the straight



TaR——

8 CONTINUITY AND

line a definite origin or zero-point ¢ and a definite unit
of length for the measurement of segments. With
the aid of the latter to every rational number @ a cor-
responding length can be constructed and if we lay
this off upon the straight line to the right or left of ¢
according as a is positive or negative, we obtain a
definite end-point p, which may be regarded as the
point corresponding to the number #; to the rational
number zero corresponds the point ¢. In this way to
every rational number g, i. e., to every individual in
R, corresponds one and only one point 2, i. e., an in-
dividual in Z. To theé two numbers a, & respectively
correspond the two points 2, ¢, and if a>4, then p
lies to the right of ¢. To the laws 1, 11, 111 of the pre-
vious Section correspond completely the laws 1, 11, 111
of the present.

ITI.
CONTINUITY OF THE STRAIGHT LINE.

Of the greatest importance, however, is the fact
that in the straight line Z there are infinitely many
points which correspond to no rational number. If
the point p corresponds to the rational number a,
then, as is well known, the length ¢ is commensur-
able with the invariable unit of measure used in the
construction, i. e., there exists a third length, a so-
calied common measure, of which these two lengths
are integral multiples. But the ancient Greeks already
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knew and had demonstrated that there are lengths in-
commensurable with a given unit of length, e. g., the
diagonal of the square whose side is the unit of length.
If we lay off such a length from the point ¢ upon ihe
line we obtain an end-point which corresponds to no
rational number. Since further it can be easily shown
that there are infinitely many lengths which are in-
commensurable with the unit of length, we may affirm:
The straight line Z is infinitely richer in point-indi-

viduals than the domain R of rational numbers in
number-individuals. l
mr desire, we try to follow up arith-
metically all phenomena in the straight line, the do-
main of rational numbers is insufficient and it becomes
absolutely necessary that the instrument & constructed
by the creation of the rational numbers be essentially
improved by the creation of new numbers such that
the domain of numbers shall gain the same complete-
ness, or as we may say at once, the same centinuily,

as the straight line.

The previous considerations are so familiar and
well known to all that many will regard their repeti-
tion quite superfluous. Still I regarded this recapitu-
lation as necessary to prepare properly for the main
question. For, the way in which the irrational num-
bers are usually introduced is based directly upon the
conception of extensive magnitudes—which itself is
nowhere carefully defined—and explains number as
the result of measuring such a magnitude by another
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of the same kind.* Instead of this I demand that
arithmetic shall be developed out of itself.

That such comparisons with non-arithmetic no-
tions have furnished the immediate occasion for the ex-
tension of the number-concept may, in a general way,
be granted (though this was certainly not the case in
the introduction of complex numbers); but this surely
is no sufficient ground for introducing these foreign
notions into arithmetic, the science of numbers. Just
as negative and fractional rational numbers are formed
by a new creation, and as the Jaws of operating with
these numbers must and can be reduced to the laws
of operating with positive integers, so we must en-
deavor completely to define irrational -numbers by
means of the rational numbers alone. The question
only remains how to do this.

The above comparison of the domain R of rational

- numbers with a straight line has led to the recognition

of the existence of gaps, of a certain incompleteness
or discontinuity of the former, while we ascribe to the
straight line completeness, absence of gaps, or con-
tinuity. In what then does this continuity consist?
Everything must depend on the answer to this ques-
tion, and only through it shall we obtain a scientific
basis for the investigation of @/ continuous domains.
By vague remarks upon the unbroken connection in

*The apparent advantage of the generality of this definition of number
disappears as soon as we consider complex numbers. According to my view,
on the other band, the notion of the ratio between two numbers of the same
kind can be clearly developed only after the introduction of irrational num-
bers.
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the smallest parts obviously nothing is gained; the
problem is to indicate a precise characteristic of con-
tinuity that can serve as the basis for valid deductions.

For a long time I pondered over this in vain, but
finally I found what I was seeking. This discovery
will, perhaps, be differently estimated by different
people ; the majority may find its substance very com-
! monplace. It consists of the following. In the pre-
ceding section attention was called to the fact that
every point p of the straight line produces a separa-
tion of the same into two portions such that every
point of one portion lies to the left of every point of
the other. I find the essence of continuity in the con-
verse, i. e., in the following principle :

«If all points of the straight line fall into two |

classes such that every point of the first class lies to
the left of every point of the second class, then there
exists one and only one point which produces this di-
vision of all points into two classes, this severing o

the straight line into two portions.”

As already said I think I shall not err in assuming
that every one will at once grant the truth of this
statement ; the majority of my readers will be very
much disappointed in learning that by this common-
place remark the secret of continuity is to be revealed.
To this I may say that I am glad if every one finds
the above principle so obvious and so in harmony
with his own ideas of a line; for I am utterly unable

to adduce any proof of its correctness, nor has any
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one the power. The assumption of this property of
the line is nothing else than an axiom by which we
attribute to the line its continuity, by which we find
continuity in the line. If space has at all a real ex-
istence it is nof necessary for it to be continuous;
many of its properties would remain the same even
were it discontinuous. And if we knew for certain
that space was discontinuous there would be nothing
to prevent us, in case we so desired, from filling up
its gaps, in thought, and thus making it continuous;
this filling up would consist in a creation of new point-
individuals and would have to be effected in accord-
ance with the above principle.

IV.
CREATION OF IRRATIONAL NUMBERS.

From the last remarks it is sufficiently obvious
how the discontinuous domain & of rational numbers
may be rendered complete so as to form a continuous
domain. In Section I it was pointed out that every
rational number a effects a separation of the system &
into two classes such that every number a; of the first
class A4, is less than every number a3 of the second
class As; the number a is either the greatest number
of the class 4; or the least number of the class Ag. If
now any separation of the system R into two classes
A,, As, is given which possesses only Zkis characteris-
tic property that every number & in A; is less than
every number a3 in 43, then for brevity we shall call
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such a separation a cu# [Schnitt] and designate it by
(41, A3). We can thén say that every rational num-
ber @ produces one cut or, strictly speaking, two cuts,
which, however, we shall not look upon as essentially
different ; this cut possesses, desides, the property that
either among the numbers of the first class there ex-
ists a greatest or among the numbers of the second
class a least number. And conversely, if a cut pos-
sesses this property, then it is produced by this great-
est or least rational number.

But it is easy to show that there exist infinitely
many cuts not produced by rational numbers. The
following example suggests itself most readily.

Let D be a positive integer but not the square of
an integer, then there exists a positive integer A such
that

NI D<(A+ D2

If we assign to the second class A4, every positive
rational number a3 whose square is > D, to the first
class 4, all other rational numbers a;, this separation
forms a cut (4, 4y), i e., every number a; is less
than every number a3. For if a; =0, or is negative,
then on that ground a; is less than any number as,
because, by definition, this last is positive ; if a; is
positive, then is its square < .2, and hence a; is less
than any positive number a3 whose square is > 2.

But this cut is produced by no rational number.
To demonstrate this it must be shown first of all that

there exists no rational number whose square = 2.
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Although this is known from the first elements of the
theory of numbers, still the following indirect proof
may find place here. If there exist a rational number
whose square =D, then there exist two positive in-
tegers 4, %, that satisfy the equation
B— D=0,

and we may assume that « is the Jeas? positive integer
possessing the property that its square, by multipli-
cation by D, may be converted into the square of an
integer 2. Since evidently

A 2 <(A+ 1)z,
the number #'=7— )\« is a positive integer certainly
Jess than ».  If further we put
f=D!¢—-—Af,
¢ is likewise a positive integer, and we have
£1— Du?—(A? — D) (# — Du?)=0),
which is contrary to the assumption respecting .
Hence the square of every rational number x is
either <D or > D. From this it easily follows that
there is neither in the class 4, a greatest, nor in the
class 43 a least number. For if we put
__x(2*+43D)
| =550’
we have

and
__ (s*—D)s
P—D=ma oW
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If in this we assume x to be a positive number
from the class 4, then 2#? << D, and hence y >« and
y?< D. Therefore y likewise belongs to the class 4.
But if we assume & to be a number from the class 4,
then 23> D, and hence y<<x, y>0, and > D.
Therefore y likewise belongs to the class 4s. This
cut is therefore produced by no rational number.

In this property that not all cuts are produced by -

rational numbers consists the incompleteness or dis-
continuity of the domain X of all rational numbers

‘Whenever, then, we have to do with a cut (43, 43)
produced by no rational number, we create a new, an
irrational number a, which we regard as completely
defined- by this cut (41, 43); we shall say that the
number a corresponds to this cut, or that it produces
this cut. From now on, therefore, to every definite
cut there corresponds a definite rational or irrational
number, and we regard two numbers as different or
unequal always and only when they correspond to es-
sentially different cuts.

In order to obtain a basis for the orderly arrange-
ment of all 7eal, i. e., of all rational and irrational
numbers we must investigate the relation between
any two cuts (41, 43) and (B;, By) produced by any
two numbers a and 8. Obviously a cut (41, 4g) is
given completely when one of the two classes, e. g.,
the first 4; is known, because the second 43 consists
of all rational numbers not contained in 4;, and the

characteristic property of such a first class lies in this
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that if the number a4, is contained in it, it also con-
tains all numbers less than ;. If now we compare
two such first classes 4,, B; with each other, it may
happen

1. That they are perfectly identical, i. e., that every
number contained in 4, is also contained in 5;, and
that every number contained in B, is also contained
in 4;. In this case Ag is necessarily identical with
By, and the two cuts are perfectly identical, which we
denote in symbols by a=for f=a.

But if the two classes Ay, By are not identical,
then there exists in the one, e. g., in Ay, a number
a@’y=%'9 not contained in the other By and conse-
quently found in By ; hence all numbers &1 contained
in B; are certainly less than this number a'y =44y and
therefore all numbers 4, are contained in A,.

2. If now this number @’y is the only one in 4, that
is not contained in B, then is every other number g,
contained in 4; also contained in B; and is conse-
quently <a'y, i. e., @'y is the greatest among all the
numbers a;, hence the cut (4,, As) is produced by
the rational number a=a'y =}, Concerning the
other cut (B, B;) we know already that all numbers
&1 in B, are also contained in Ay and are less than
the number o'y = 4’y which is contained in By ; every
other number 43 contained in £3 must, however, be
greater than ', for otherwise it would be less than
a'y, therefore contained in 4, and hence in B;; hence
¥3 is the least among all numbers contained in By,
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and consequently the cut (B, By) is produced by the
same rational number f=4's=4a';=a. The two cuts
are then only unessentially different.

3. If, however, there exist in 4, at least two differ-
ent numbers a'y =4’ and &} = 4", which are not con-
tained in A, then there exist infinitely many of them,
because all the infinitely many numbers lying between
@'y and a"”y are obviously contained in 4; (Section I,
11) but not in By. In this case we say that the num-
bers a and B corresponding to these two essentially
different cuts (44, 4y) and (By, By) are different, and
further that a is greafer than B, that B is /ess than a,
which we express in symbols by a > 8 as well as 8 < a.
It is to be noticed that this definition coincides com-
pletely with the one given earlier, when a, 8 are ra-
tional. .

The remaining possible cases are these:

4. If there exists in /B one and only one number
&'1=a'y, that is not contained in 4; then the two cuts
(A1, Ag) and (B1, By) are only unessentially different
and they are produced by one and the same rational
number a=a's =451 =4.

5. But if there are in J5; at least two numbers
which are not contained in 4, then B> a, a << 8.

As this exhausts the possible cases, it follows that
of two different numbers one is necessarily the greater,
the other the less, which gives two possibilities. A
third case is impossible. This was indeed involved

in the use of the comparative (greater, less) to desig-
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“mate the relation between a, B; but this use has only
now been justified. In just such investigations one
needs to exercise the greatest care so that even with
the best intention to be honest he shall not, through
a hasty choice of expressions borrowed from other no-
tions already developed, allow himself to be led into
the use of inadmissible transfers from one domain to
the other.

If now we consider again somewhat carefully the

case a> B it is obvious that the less number B, if
rational, certainly belongs to the class 4;; for since

there is in 4; a number a'; = 4’3 which belongs to the
class By, it follows that the number B, whether the
greatest number in 5; or the least in B, is certainly
<a'1 and hence contained in 4;. Likewise it is ob-
vious from a > B that the greater number a, if rational,

certainly belongs to the class By, because a>a';. Com-
bining these two considerations we get the following
result: If a cut is produced by the number a then any
rational number belongs to the class A4; or to the class
Ay according as it is less or greater than a; if the
number a is itself rational it may belong to either
class.

From this we obtain finally the following: If a>> 83,
i. e., if there are infinitely many numbers in 4, not
contained in B then there are infinitely many such
numbers that at the same time are different from « and

from B; every such rational number ¢ is <a, because
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it is contained in 4, and at the same time it is > 8
because contained in Zj.

V.
CONTINUITY OF THE DOMAIN OF REAL NUMBERS.

In consequence of the distinctions just established
the system R of all real numbers forms a well-arranged
domain of one dimension ; this is to mean merely that
the following laws prevail :

1. If a>pB, and B>y, then is also a>y. We
shall say that the number 8 lies between a and y.

n. If a, y are any two different numbers, then
there exist infinitely many different numbers 8 lying
between a, ¥.

nur. If a is any definite number then all numbers
of the system R fall into two classes 2[; and 2[s each
of which contains infinitely many individuals; the
first class 2[; comprises all the numbers q; that are
less than a, the second 2[; comprises all the numbers
ag that are greater than a; the number a itself may be
assigned at pleasure to the first class or to the second,
and it is respectively the greatest of the first or the
least of the second class. In each case the separation
of the system R into the two classes 2y, 2lz is such
that every number of the first class 2[; is smaller than
every number of the second class 2 and we say that
this separation is produced by the number a.

For brevity and in order not to weary the reader I

suppress the proofs of these theorems which follow
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immediately from the definitions of the previous sec-
tion.

Beside these properties, however, the domain R
possesses also continuity; i. e., the following theorem
is true:

v. If the system R of all real numbers breaks up
into two classes 2[;, 2z such that every number a; of
the class 2[; is less than every number ag of the class
As then there exists one and only one number a by
which this separation is produced.

Proof. By the separation or the cut of X into b) 0]
and 2[; we obtain at thessame time a cut (41, 42)
of the system & of all rational numbers which is de-
fined by this that 4, contains all rational numbers of
the class 2[; and 4, all other rational numbers, i. e.,
all rational numbers of the class 2[;. Let a be the
perfectly definite number which produces this cut
(41, A3). If B is any number different from a, there
are always infinitely many rational numbers ¢ lying
between a and B. If B < a, then ¢<a; hence ¢ be-
longs to the class 4; and consequently also to the
class 3, and since at the same time 8 < ¢ then B also
belongs to the same class 2[;, because every number
in 2y is greater than every number ¢ in 2A;. But if
B> a, then is ¢ >a; hence ¢ belongs to the class Aq
and consequently also to the class 2[y, and since at
the same time 8> ¢, then B also belongs to the same
class s, because every number in 2[; is less than
every number ¢ in ;. Hence every number g differ-
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ent from a belongs to the class 2[; or to the class 2l:
according as f<a or B>>a; consequently a itself is
either the greatest number in 2[; or the least number
in s, i. €., ais on2 and obviously the only number
by which the separation of & into the classes Ui, s
is produced. Which was to be proved.

VI
OPERATIONS WITH REAL NUMBERS.

To reduce any operation with two real numbers
a, B to operations with rational numbers, it is only
necessary from the cuts (43, 43), (B1, Ba) produced
by the numbers a and 8 in the system R to define the
cut (€1, Cy) which is to correspond to the result of
the operation, y. I confine myself here to the discus-
sion of the simplest case, that of addition.

If ¢ is any rational number, we put it into the class
Cy, provided there are two numbers one a; in 4; and
one #; in By such that their sum a1+ #1>¢; all other
rational numbers shall be put into the class C3. This
separation of all rational numbers into the two classes
€y, Cy evidently forms a cut, since every number ¢ in
C, is less than every number ¢; in Cy. If both a and

B are rational, then every number ¢; contained in C is
<a-+ B, because a1<a, #1<B, and therefore a1+ 4
< a+ B; further, if there were contained in 3 a num-
ber ¢ < a-+ B, hence a4 B=c¢3 + p, where p is a pos-
itive rational number, then we should have

ca=(a—3}2) + (B—%2),
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which contradicts the definition of the number ¢s, be-
cause a—} # is a number in 4;, and B—3# a number
in B;; consequently every number ¢y contained in Cy
is >a+ B. Therefore in this case the cut ((y, Gy) is
produced by the sum a- B. Thus we shall not violate
the definition which holds in the arithmetic of rational
numbers if in all cases we understand by the sum
a-+ B of any two real numbers a, £ that number y by
which the cut (G, () is produced. Further, if only
one of the two numbers a, B is rational, e. g., a, it is
easy to see that it makes no difference with the sum
y=a-} 8 whether the number a is put into the class
A or into the class Aq.

Just as addition is defined, so can the other ope-
rations of the so-called elementary arithmetic be de-
fined, viz., the formation of differences, products,
quotients, powers, roots, logarithms, and in this way
we arrive at real proofs of theorems (as, e. g., V2 V'3
=V'6), which to the best of my knowledge have never
been established before. The excessive length that is
to be feared in the definitions of the more complicated
operations is partly inherent in the nature of the subject
but can for the most part be avoided. Very useful in
this connection is the notion of an inferval, i. e., a
system 4 of rational numbers possessing the follow-
ing characteristic property: if @ and o’ are numbers
of the system A4, then are all rational numbers lying
between @ and @' contained in 4. The system R of
all rational numbers, and also the two classes of any
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cut are intervals. If there exist a rational number a3
which is less and a rational number a3 which is greater
than every number of the interval 4, then 4 is called
a finite interval ; there then exist infinitely many num-
bers in the same condition as @; and infinitely many in
the same condition as a3; the whole domain R breaks
up into three parts 41, 4, 43 and there enter two per-
fectly definite rational or irrational numbers aj, a3
which may be called respectively the lower and upper
(or the less and greater) /Zmifs of the interval; the
lower limit a; is determined by the cut for which the
system A forms the first class and the upper ag by the
cut for which the system 43 forms the second class.
Of every rational or irrational number a lying between
a1 and ag it may be said that it lies witkin the interval
A. If all numbers of an interval 4 are also numbers
of an interval B, then 4 is called a portion of B.

Still lengthier considerations seem to loom up
when we attempt to adapt the numerous theorems of
the arithmetic of rational numbers (as, e. g., the theo-
rem (a4 &)c=ac+ b¢) to any real numbers. This,
however, is not the case. It is easy to see that it
all reduces to showing that the arithmetic operations
possess a certain continuity. What I mean by this
statement may be expressed in the form of a general
theorem :

«¢If the number A is the result of an operation per-
formed on the numbers a, B, y, . . . and A lies within
the interval Z, then intervals 4, B, C, ... can be

T RO
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taken within which lie the numbers a, 8, y, . . . such
that the result of the same operation in which the
numbers a, £, y, . . . are replaced by arbitrary num-
bers of the intervals 4, B, C, . .. is always a number
lying within the interval Z.” The forbidding clumsi-
ness, however, which marks the statement of such a
theorem convinces us that something must be brought
in as an aid to expression ; this is, in fact, attained in
the most satisfactory way by introducing the ideas of
variable magnitudes, functions, limiting values, and it
would be best to base the definitions of even the sim-
plest arithmetic operations upon these ideas, a matter
which, however, cannot be carried further here.

VII.
INFINITESIMAL ANALYSIS,

Here at the close we ought to explain the connec-
tion between the preceding investigations and certain
fundamental theorems of infinitesimal analysis.

We say that a variable magnitude » which passes
through successive definite numerical values ap-
proaches a fixed limiting value a when in the course
of the process x lies finally between two numbers be-
tween which a itself lies, or, what amounts to the
same, when the difference x—a taken absolutely be-
comes finally less than any given value different from
zero.

One of the most important theorems may be stated
in the following manner: “If a magnitude x grows
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continually but not beyond all limits it approaches a
limiting value.”

I prove it in the following way. By hypothesis
there exists one and hence there exist infinitely many
numbers ag such -that x remains continually < ag; I
designate by 2[; the system of all these numbers ay,
by 2l the system of all other numbers a;; each of the
latter possesses the property that in the course of the
process x becomes finally > a3, hence every number a;
is less than every number ag and consequently there
exists a number a which is either the greatest in 2[;
or the least in s (V, 1v). The former cannot be the
case since x never ceases to grow, hence a is the least
number in 2[;. Whatever number a; be taken we shall
have finally aj < & <a, i. €., 2 approaches the limiting
value a.

This theorem is equivalent to the principle of con-
tinuity, i. e., it loses its validity as soon as we assume
a single real number not to be contained in the do-

main X ; or otherwise expressed: if this theorem is

correct, then is also theorem 1v. in V. correct.

Another theorem of infinitesimal analysis, likewise
equivalent to this, which is still oftener employed,
may be stated as follows: ‘“If in the variation of a
magnitude x we can for every given positive magni-
tude 8 assign a corresponding position from and after
which x changes by less than & then x approaches a
limiting value.”

This converse of the easily demonstrated theorem
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that every variable magnitude which approaches a
limiting value finally changes by less than aﬁy given
positive magnitude can be derived as well from the
preceding theorem as directly from the principle of
continuity. I take the latter course. Let & be any
positive magnitude (i. e., 8> 0), then by hypothesis
a time will come after which x will change by less
than §, i. e., if at this time x has the value a, then
afterwards we shall continually have x>a—38§ and
x<a-+8 Inow for a moment lay aside the original
hypothesis and make use only of the theorem just
demonstrated that all later values of the variable x lie
between two assignable finite values. Upon this I base
a double separation of all real numbers. To the sys-
tem 2[; I assign a number a (e. g., @+ 8) when in the
course of the process x becomes finally <as; to the
system 2[; I assign every number not contained in 2[s;
if @3 is such a number, then, however far the process
may have advanced, it will still happen infinitely many
times that x >a;. Since every number a; is less than
every number a3 there exists a perfectly definite num-
ber a which produces this cut (3, 2[2) of the system
R and which I will call the upper limit of the variable

x which always remains finite. Likewise as a result
of the behavior of the variable £ a second cut (38,,
B,) of the system X is produced ; a number 8 (e.g.,
a—38) is assigned to By when in the course of the pro-
cess x becomes finally >8; every other number B,
to be assigned to B, has the property that x is never
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finally > B, ; therefore infinitely many times x becomes
< B2 ; the number 8 by which this cut is produced I
call the lower limiting value of the variable . The
two numbers a, B are obviously characterised by the
following property: if € is an arbitrarily small positive
magnitude then we have always finally x << a- e and
x> B—e¢, but never finally x <a—e and never finally
x> fB-+e Now two cases are possible. If aand B8
are different from each other, then necessarily a>> B,
since continually a.gZﬁg ; the variable x oscillates,
and, however far the process advances, always under-
goes changes whose amount surpasses the value
(a— B)—2¢ where € is an arbitrarily small positive
magnitude. The original hypothesis to which I now
return contradicts this consequence; there remains
only the second case a=f and since it has already
been shown that, however small be the positive magni-
tude ¢, we always have finally x <a-+ e and > B—¢,
x approaches the limiting value a, which was to be
proved.

These examples may suffice to bring out the con-
nection between the principle of continuity and -in-
finitesimal analysis,
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