Mathematics 446 - second homework

This is due next Monday, January 17.

1. The Egyptians always expressed fractions as sums of unit fractions $1 / N$. This raises some mildly interesting mathematical questions.
(a) Is it true that every fraction f between 0 and 1 can be expressed as a sum of distinct unit fractions? If so, prove it. If not, give an example, and explain which can be expressed in this way (with poroofs).
(b) Can f have an infinite number of such expressions? An infinite number witha given number of terms?
(c) Find all such expressions for $2 / 45$ involving two terms; three terms.
(d) Find all such expressions for $2 / 47$ involving two or three terms. For $2 / 53$.
2. Find the base 60 expressions for (a) 180 , (b) 456 , (c) 5,000 , and (d) $314,678$.
3. Write in detail a proof that if B is an integer larger than 1 , every positive integer n can be expressed uniquely as a sum

$$
n=n_{0}+n_{1} B+n_{2} B^{2}+\cdots+n_{k} B^{k}
$$

with $0 \leq n_{i}, n_{k}>0$. Write down an explicit algorithm for find the n_{i}.
4. Find the infinite sexagesimal expansion for $1 / 3,1 / 5,1 / 11,1 / 13$.
5. Find the first 8 'digits' of $\sqrt{2}$ in base 60 .
6. Read the selection by Newman. Tell me what the problem being solved on the two-page spread is, and what and where the solution is on those pages.

