Pythagorean triples

A **Pythagorean triple** is a set of three integers a, b, c which are pairwise relatively prime such that

$$a^2 + b^2 = c^2 \, .$$

Bot the Babylonian and Greek mathematicians knew how to find them. I'll explain here what I think is the simplest modern way to do this. There are two stages to this.

Stage 1.

If $a^2 + b^2 = c^2$ then

$$\left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = 1$$

so that (a/c, b/c) lies on the circle $x^2 + y^2 = 1$.

It also works the other way. If (x, y) is a point on the unit circle with rational coordinates, then it turns out that we can write x = a/c, y = b/c in reduced form. The point is that they have the same denominator in reduced form.

Exercise. Prove that if x = a/c is in reduced form and y = b/c with $x^2 + y^2 = 1$, tehn b/c is also in reduced form.

Stage 2.

Suppose x and y are fractions with $x^2 + y^2 = 1$. Because the coordinates of x, y) are rational, we can connect it by a straight line with rational slope m to the point (1,0). Explicitly, he slope is m = y/(x-1).

The equation of this line is y = m(x - 1). Conversely, any line y = m(x - 1) intersects the circle in two points, and since on of them, namely (1, 0), has rational coordinates so has the other. We can solve explicitly for x and y given m.

$$\begin{aligned} x^2 + y^2 &= 1 \\ &= x^2 + m^2 (x - 1)^2 \\ &= x^2 (1 + m^2) - 2m^2 x + m^2 \\ x^2 - 2\frac{m^2}{m^2 + 1} x + \frac{m^2 - 1}{m^2 + 1} = 0 \\ &(x - 1) \left(x - \frac{m^2 - 1}{m^2 + 1} \right) = 0 \end{aligned}$$

 $x = \frac{m^2 - 1}{m^2 + 1}, \quad y = \frac{-2m}{m^2 + 1}.$

so that

As m varies from $-\infty$ to ∞ the point (x, y) traverses the whole circle except the point (1, 0). This is the point of stage 2: the Pythagoraen triples correspond to slopes m in the range m < -1. We haven't seen the exact path backwards yet, though.

We want to use this construction to generate Pythagorean triples. First of all, we want x and y positive, which means m < -1. We want m rational, so set

$$m = \frac{-p}{q}$$

with p > q, and p and q relatively prime. Then

$$x = \frac{p^2 - q^2}{p^2 + q^2}, \quad y = \frac{2pq}{p^2 + q^2}.$$

This suggests that, to get Pythagorean triples, set

$$a = p^2 - q^2$$
, $b = 2pq$, $c = p^2 - q^2$.

Here's a few examples:

р	q	$p^2 - q^2$	2pq	$p^{2} + q^{2}$
2	1	3	4	5
3	1	8	6	10
3	2	5	12	13

We see that the case (3,1) doesn't work, and if you think about it you realize two odd numbers can't ever work, because $p^2 - q^2$ and $p^2 + q^2$ will both be even. So we can restrict ourselves to the case where one is even, one odd.

Exercise 1. Make up a table of all triples with $8 \ge p > q > 0$, one odd and one even.

Exercise 2. Prove that if p > q are relatively prime with one odd and one even, then a = 2pq, $b = p^2 - q^2$, and $c = p^2 + q^2$ are a Pythagorean triple.

Exercise 3. If p and q are both odd, you can get a good triple by dividing $p^2 - q^2$, $p^2 + q^2$, and 2pq all by 2. Prove that. Calculate all of these with $5 \ge p$. You don't really get anything new. Why is that?

Exercise 4. Swapping a and b doesn't really give you a new triple. What does this swap mean in terms of m?