Pythagorean triples

A Pythagorean triple is a set of three integers a, b, c which are pairwise relatively prime such that

$$
a^{2}+b^{2}=c^{2}
$$

Bot the Babylonian and Greek mathematicians knew how to find them. I'll explain here what I think is the simplest modern way to do this. There are two stages to this.

Stage 1.

If $a^{2}+b^{2}=c^{2}$ then

$$
\left(\frac{a}{c}\right)^{2}+\left(\frac{b}{c}\right)^{2}=1
$$

so that $(a / c, b / c)$ lies on the circle $x^{2}+y^{2}=1$.

It also works the other way. If (x, y) is a point on the unit circle with rational coordinates, then it turns out that we can write $x=a / c, y=b / c$ in reduced form. The point is that they have the same denominator in reduced form.
Exercise. Prove that if $x=a / c$ is in reduced form and $y=b / c$ with $x^{2}+y^{2}=1$, tehn b / c is also in reduced form.

Stage 2.

Suppose x and y are fractions with $x^{2}+y^{2}=1$. Because the coordinates of x, y) are rational, we can connect it by a straight line with rational slope m to the point $(1,0)$. Explicitly, he slope is $m=y /(x-1)$.
The equation of this line is $y=m(x-1)$. Conversely, any line $y=m(x-1)$ intersects the circle in two points, and since on of them, namely $(1,0)$, has rational coordinates so has the other. We can solve explicitly for x and y given m.

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
& =x^{2}+m^{2}(x-1)^{2} \\
& =x^{2}\left(1+m^{2}\right)-2 m^{2} x+m^{2} \\
x^{2}-2 \frac{m^{2}}{m^{2}+1} x+\frac{m^{2}-1}{m^{2}+1} & =0 \\
(x-1)\left(x-\frac{m^{2}-1}{m^{2}+1}\right) & =0
\end{aligned}
$$

so that

$$
x=\frac{m^{2}-1}{m^{2}+1}, \quad y=\frac{-2 m}{m^{2}+1} .
$$

As m varies from $-\infty$ to ∞ the point (x, y) traverses the whole circle except the point $(1,0)$. Thsi is the point of stage 2: the Pythagoraen triples correspond to slopes m in the range $m<-1$. We haven't seen the exact path backwards yet, though.

We want to use this construction to generate Pythagorean triples. First of all, we want x and y positive, which means $m<-1$. We want m rational, so set

$$
m=\frac{-p}{q}
$$

with $p>q$, and p and q relatively prime. Then

$$
x=\frac{p^{2}-q^{2}}{p^{2}+q^{2}}, \quad y=\frac{2 p q}{p^{2}+q^{2}} .
$$

This suggests that, to get Pythagorean triples, set

$$
a=p^{2}-q^{2}, \quad b=2 p q, \quad c=p^{2}-q^{2} .
$$

Here's a few examples:

p	q	$p^{2}-q^{2}$	$2 p q$	$p^{2}+q^{2}$
2	1	3	4	5
3	1	8	6	10
3	2	5	12	13

We see that the case $(3,1)$ doesn't work, and if you think about it you realize two odd numbers can't ever work, because $p^{2}-q^{2}$ and $p^{2}+q^{2}$ will both be even. So we can restrict ourselves to the case where one is even, one odd.

Exercise 1. Make up a table of all triples with $8 \geq p>q>0$, one odd and one even.
Exercise 2. Prove that if $p>q$ are relatively prime with one odd and one even, then $a=2 p q, b=p^{2}-q^{2}$, and $c=p^{2}+q^{2}$ are a Pythagorean triple.

Exercise 3. If p and q are both odd, you can get a good triple by dividing $p^{2}-q^{2}, p^{2}+q^{2}$, and $2 p q$ all by 2. Prove that. Calculate all of these with $5 \geq p$. You don't really get anything new. Why is that?

Exercise 4. Swapping a and b doesn't really give you a new triple. What does this swap mean in terms of m ?

