Mathematics 446 - fifth assignment solutions

Exercise 1.

Exercise 2.

Exercise 3. Suppose given a series of numbers X_{n} such that $X_{n}=c X_{n-1}+d X_{n-2}$. Show that there exist numbers a and b such that $X_{n}=a \alpha^{n}+b \beta^{n}$ where α and β are the roots of

$$
x^{2}=c x+d
$$

Explain how to determine a and b explicitly.
We have

$$
\begin{aligned}
& X_{0}=a+b \\
& X_{1}=a \alpha+b \beta
\end{aligned}
$$

which we can solve to get

$$
a=\frac{X_{1}-X_{0} \beta}{\alpha-\beta}, \quad b=\frac{X_{1}-X_{0} \alpha}{\beta-\alpha} .
$$

Now we want to prove that for all n

$$
X_{n}=a \alpha^{n}+b \beta^{n}
$$

The proof goes by strong induction, with starting values $n=0$ and $n=1$. Then for $n>2$

$$
\begin{aligned}
X_{n} & =c X_{n-1}+d X_{n-2} \\
& =c\left(a \alpha^{n-1}+b \beta^{n-1}\right)+d\left(a \alpha^{n-2}+b \beta^{n-2}\right) \\
& =a \alpha^{n-2}(c \alpha+d)+b \beta^{n-2}(c \beta+d) \\
& =a \alpha^{n-2} \alpha^{2}+b \beta^{n-2} \beta^{2} \\
& =a \alpha^{n}+b \beta^{n} .
\end{aligned}
$$

Exercise 4.

Exercise 5. (a) Write down the explicit formula for the length of a regular polygon of $2 n$ sides, given that for n sides. (b) Give an estimate as accurate as you can of how many subdivisions of the square you would have to make to calculate the area of a circle, hence π, correctly to 10 decimals. You will want to use the previous exercise on parabolas. Explain.
See the notes on π.

