Mathematics 446 - fourth assignment solutions

Exercise 1. Prove by mathematical induction this formula for the n-th Fibonacci number:

$$
F_{n}=\frac{\Phi^{n}-(-1)^{n} / \Phi^{n}}{\sqrt{5}}
$$

where $\Phi=1.618 \ldots$ is the golden ratio. Then use it to prove that the ratio of F_{n+1} / F_{n} converges to Φ by answering this question explicitly: given a small number ε, how large does n have to be in order that

$$
\left|F_{n+1} / F_{n}-\Phi\right| \leq \varepsilon ?
$$

The formula can be checked explicitly for $n=0$ and 1. Then look at $\# 3$ in Assignment 6 to see what to do next.

As for the last part:

$$
\begin{aligned}
\frac{F_{n+1}}{F_{n}} & =\frac{\Phi^{n+1}-(-1)^{n+1} \Phi^{-n-1}}{\Phi^{n}-(-1)^{n} \Phi^{-n}} \\
\frac{F_{n+1}}{F_{n}}-\Phi & =\frac{\Phi^{n+1}-(-1)^{n+1} \Phi^{-n-1}}{\Phi^{n}-(-1)^{n} \Phi^{-n}}-\Phi \\
& =\frac{(-1)^{n} \Phi^{-n+1}-(-1)^{n+1} \Phi^{-n-1}}{\Phi^{n}-(-1)^{n} \Phi^{-n}} \\
& =(-1)^{n} \frac{\Phi+\Phi^{-1}}{\Phi^{2 n}-(-1)^{n}} \\
& =(-1)^{n} \frac{1}{\Phi^{2 n}-(-1)^{n}}
\end{aligned}
$$

Its size is about $\Phi^{-2 n}$. This will be about ε when $2 n \ln \Phi=-\ln \varepsilon$.

Exercise 2.

