
Mathematics 446 — third assignment — solutions

Exercise 1. Locate through the UBC library and JSTOR the article ‘Of the theory of circulating decimal
fractions’ by John Robertson in the 1768 volume of Philosophical Transactions. Summarize what it says in
300 words or less, includng some calculation examples.

The fundamental mathematical point of Robertson’s article is that

1

9999 . . .9
= 0.000 . . . 1 000 . . . 1 000 . . .

where the denominator on the left has k digits, as does the repeating part 000 . . . 1 on the right. For example

1

999
= 0.001 001 001 001 . . . = 0. 0̇01̇ .

It is an easy thing to prove, since

9999 . . .9 · 0.000 . . . 1 000 . . . 1, 000 . . . = 0.99999999 . . . ,

which because of the peculiarities of the decimal system is equal to 1.

From this it follows that if D has k digits (maybe padded at the left with zeroes) then

D

9999 . . . 9
= 0.DDDDD . . . ,

which is really the main observation of the article. For example

231

999
= 0.231231231 . . . = 0.2̇31̇ .

It can be used backwards, too, to tell us how to write any repeating decimal as a fraction. Thus

23.34567676767 . . . = 23.345 + 0.00067676767 . . . = 23.345 +
0.676767 . . .

1000
= 23.345 +

1

1000

67

99
.

It is important to realize that Robertson says nothing about why an arbitrary fraction p/q can be expressed
as a repeating decimal fraction, nor about the nature of the repetition. I am not sure of the history of this
fact, nor when it was first proven. It is not an entirely trivial question since it relates to the equation np = n
modulo a prime p, which was first observed by Fermat, and also more complicated congruences modulo
composite numbers. The earliest complete treatment I am aware of is in Disquisitiones Arithmeticae by C.
F. Gauss, where it is one of the most elementary topics dealt with.

Exercise 2. Write down and prove by mathematical induction the formula for the finite geometric sum

1 + q + q2 + · · · + qn .

The formula is

1 + q + q2 + · · · + qn =
qn+1 − 1

q − 1
.

For n = 0 it is obvious. Assume true for n. Then

1 + q + · · · + qn+1 =
qn+1 − 1

q − 1
+ qn+1 =

qn+2 − qn+1 + qn+1 − 1

q − 1
=

qn+2 − 1

q − 1
.
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Exercise 3. Prove by mathematical induction the binomial theorem

(x + 1)n = xn + nxn−1 +
n(n − 1)

2
xn−2 + · · · + nx + 1

where n is an arbitrary positive integer and the coefficient of xr is

cn,r =
n(n − 1) · · · (n − (r − 1))

1 · 2 · 3 · · · r

Clear for n = 0. Assume true for n. Then

(1 + x)n+1 = (1 + x)n(1 + x) =
(

n
∑

r=0

cn,rx
r
)

(1 + x)

The new coefficient of xn+1 is 1, that of x0 is 1, and for 1 ≤ r ≤ n it is

Cn,r + Cn,r−1

It must be shown that
Cn,r + Cn,r−1 = Cn+1,r .

I leave this as an exercise.

Exercise 4. Find a such that
a ≡ 14 modulo 71

a ≡ 17 modulo 91

We must solve
14 + A · 71 = 17 modulo 91

or
A · 71 = 3 modulo 91 .

We now must find X such that XA = 1 modulo 91. We have

91 = 1 · 71 + 20

71 = 3 · 20 + 11

20 = 1 · 11 + 9

11 = 1 · 9 + 2

9 = 4 · 2 + 1

2 = 2 · 1

If we use the matrix method, we have to calculate

[

1
1 −2

][

1
1 −4

] [

1
1 −1

] [

1
1 −1

] [

1
1 −3

][

1
1 −1

]

=

[

32 −41
−71 91

]

and read k and ` from the top row to be 32, −41. More explicitly, the matrices we get in succession are

[

0 1
1 −1

]

,

[

1 −1
−3 4

]

,

[

−3 4
4 −5

]

,

[

4 −5
−7 9

]

,

[

−7 9
32 −41

]

,

[

32 −41
−71 91

]
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If we use the substitution method, we go backwards.

So to solve for A we set A = (−41)(3) = −123 = 59 modulo 91. We have a = 14 + 59 · 71 = 4203. It checks.

Exercise 5. Write down a complete proof that
√

3 is not a fraction.

Suppose 3 = p2/q2 with p, q relatively prime, or 3q2 = p2. Then 3 divides p2, so 3 divides p, p2 = 9r2. Then
3q2 = 9r2, q2 = 3r2, so 3|q. Contradiction.

Exercise 6. Write an essay of 100 words explaining why the Chinese Remainder Theorem is called what it
is.

From http://www.andrews.edu/ calkins/math/biograph/199899/topcrt.htm:

“We have a number of things, but we do not know exactly how many. If we count them by threes we have
two left over. If we count them by fives we have three left over. If we count them by sevens we have two left
over. How many things are there?”

This is the first known work involving the Chinese Remainder Theorem (CRT). It is from the book ”Sun
Tzu Suan Ching” (”Master Sun’s Mathematical Manual”) written by Sun Zi (also called Master Sun). Sun
Zi was probably a Buddhist scholar or monk. This is the only problem in the book relating to the CRT, so
we don’t know if he made a general method to solve these types of problems. There is some dispute about
when problem 26 (up above) was written. Some experts say ”Sun Tzu Suan Ching” was written in the late
3rd century BC, others argue it was created in the 4th century.

Exercise 7. Find all the powers of 60 modulo 37. Use this to find the repeating fraction for 1/37 in base 60.

The powers of 60 modulo 13 are

1, 23, 11, 31, 10, 8, 36, 14, 26, 6, 27, 29, 1.

So 6012 = 1 modulo 37, and the repeat length of 37 in base 60 is 12. What are the repeating digits? We
could recover them from a calculation of

6012 − 1

37

but this is an awfully large number, too large for most calculators to handle exactly. We can use a trick,
however. Write

6012 − 1

37
=

(606 − 1)(606 + 1)

37
.

We know that 606 6= 1 modulo 37, so 37 must divide the second factor. In fact

(606 − 1)/37 = 1 : 37 : 17 : 50 : 16 : 13

But if we multiply this by 606 − 1 we get

1 : 37 : 17 : 50 : 16 : 13 : 0 : 0 : 0 : 0 : 0 : 0 − 1 : 37 : 17 : 50 : 16 : 13

which we can calculate by hand. The final answer is

0.1 : 37 : 17 : 50 : 16 : 12 : 58 : 22 : 42 : 9 : 43 : 47 : . . .

Exercise 8. What is the length of the repeating fraction 1/91 in base 60?

91 = 7 · 13. We have 603 = 1 modulo 7, and 604 = 1 modulo 13. The repeat for 91 is therefore 12.

Exercise 9. Read Book VII.Proposition 1 of Euclid’s Elements (on line at Joyce’s site). Restate the Propo-
sition and rewrite the proof in your own words, using modern algebraic notation.

Exercise 10. Find the continued fraction expansion of (a)
√

5; (b)
√

3; (c)
√

19.
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(a)
x q r√

5 2
√

5 − 2√
5 + 2 4

√
5 − 2

So 2, 4, 4 . . . .
√

3 1
√

3 − 1
√

3 + 1
2

1

√
3 − 1
2√

3 + 1 2
√

3 − 1

So 1, 1, 2, 1, 2, . . .

Last: 4, 2, 1, 3, 1, 3, 8, 2, 1, . . .


