
Dedekind’s definition of real numbers

Decimal fractions (as opposed to integers) became commonplace in Europe starting about 1600. In the next
century this invention played a major role in stimulating a new and powerful techniques in mathematics,
particularly concerned with limit processes. The way in which limits were dealth with was somewhat im-
precise in theory, as opposed to practice, however, until the beginning of the nineteenth century. In about
1830 Cauchy developed a new way to prove results about limits rigourously, based on a very small number
of properties of real numbers that he thought were self-evident. But there was still some vagueness about
excatlyw aht a real number weas—Cauchy’s justification for his basic properties depended essentiually on an
appeal to geometric intuition about a line. It wasn’t until the mid 1870’s that Dedekind finally came up with
a formal definition of real numbers that justified Cauchy’s results. His definition was remarkable in many
ways—as far as I can see, Dedekind was one of a small number of mathematicians in the late nineteenth
century responsible for introducing abstract sets into mathematics, and his definition of real numbers was a
major step in this development.

1. Inadequacy of infinite decimal expansions

In practical terms, one would be tempted to identify a real number with its decimal expansion. Of course
this can’t be quite valid, since some numbers have two decimal expansions:

1.00000000 . . . = 0.9999999999 . . .

That is not necessarily an impossible problem to deal with, since you could just rule out one of these, say
the second. But in fact this ambiguity is just the tip of an iceberg full of difficulties. Let’s see why. Suppose
we make this definition: aA real number is an infinite decimal expansion which does not terminate in an

infinite sequence of 9’s. If this is a good definition, then we should be able to define the usual arithmetic
operations in terms of decmal expansions—that is to say, if we are given two infinite decimal expansions we
should be able to specify, say, the decimal expansion of what should be the sum of the two numbers. This
is not possible.

In order to see why not, we have to ask what an infinite decimal expansion means—it means a sequence of
numbers dk (coefficient of 10k) for all integers k such that (a) 0 ≤ dk < 10 for all k; (b) dk = 0 for k large
enough; (c) there exist arbitarily large k with d−k 6= 9.

So suppose now that we are given two such expansions ak and bk. We want to specify a third, ck, representing
the sum. Addition is continuous, so the sum has to be the limit of the sums of finite parts of the expansions
a and b. These we can find in the usual way. But what we get is not necessarily the decimal expansion of the
sum, since in doing the sum we might start at any point getting a long string of 9’s, and this could remain
a string of 9’s, or by a small change somewhere it could sudenly turn to a string of zeroies. If we are adding
decimal numbes starting at the left, we can expect at any point to have to modify all we ahve done because
of a carry operation at the right end.

The basic problem is this: Decimal expansions are not continuous—an arbitrarily small change in a number

can change all the terms in its decimal expansion.

I won’t explain in detail, but it is arguable that it was the recognition that continuity is the fundamental
property of calculations, as opposed to decimal expansions, that turned out to be the secret to Cauchy’s
development of analysis. This is a subtle truth.
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2. Cuts

As far as I know, there is no way to base a theory of real numbers on some practical way of representing
them. Dedekind’s brilliant idea was to use an impractical one. There are two basic points behind Dedekind’s
definition of a real number: (1) the geometric intuition that any real number divides the set of all real numbers
into two halves, those smaller and those bigger; (2) and real number can be approximated arbitrarily well
by rational numbers. Thus, we can think of a real number not just by its infinite decimal expansion, but by
the way in which all rational numbers approximate it. Think about the ideal way in which we would find
better and better approximations to a real number x: We pick a rational number r at random, and ask, how
can we find a better approximation to x than r? We ask, is r ≤ x or not? If so, then we choose a bigger
one, say r + 1, and ask the same question. Sooner or later we’ll come up with a pair r and s with r ≤ x and
x ≤ s. (Similarly if r > x originally.) Now we bisect this pair to get t = (r + s)/2, and ask whether t ≤ x or
not. If it is, then we replace r by t and if not we replace s by t. Continue on in this way. The crucial point
here is that to find a sequence of rational approximations to a real number x, all we have to do is be able to
answer this question:

• If r is a rational number, is r ≤ x or not?

Or in other words, to be able to specify in some sense the set Ax of all rational numbers r with r ≤ x, or
equivalently the set Bx of all r with r > x. Or both.

Dedekind defines a cut to be a partition of the real numbers into two sets, say A and B, with these properties:

• Neither A nor B is empty;

• Every rational number is in either A or B but not both;

• If a lies in A and b in B then a < b.

Of course if one of these is given then the other is just its complement, the set of rational numbers that are
not in it. So a cut is equally well determined by a single set A such that

• There exist rational numbers that do not belong to A;

• Whenever r lies in A and s doesn’t, then r < s.

Let’s check whether these definitions are quite what we expect by proving a few elementary properties.

• Suppose that A determines a cut, let B be its complement. If b belongs to B and b < b′ then b′ also lies

in B.

Proof. By contradiction. If a′ does not lie in A then it lies in its complement. But then by assumption
a < a′. Oops. Second assertion similarly.

We now want to define a real number to be a cut. There is a technical problem, sinbce if x is a rational
number, there are two cuts associated to it—one of r ≤ x and the other of r < x. We choose the first. This
leads to:

• A real number is defined to be a cut (A, B) with the property that B has no least element.

If we are given a cut (A, B) which does not have this property, we get one that does by swapping the least
element of B into A. I call this standardization of the cut. So a real number x from now on in these notes
is neither more nor less than a standard cut (A, B), determined by a set A with the properties listed above,
and in addition such that the complement of A has no least element.
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3. Defining arithmetic operations

Let’s see if we can define addition, which we couldn’t do if we defined a real number to be a decimal expansion.

Suppose x and y are two real numbers. Define a set A to be the set of all rational numbers r + s with r
in Ax and s in Ay. It may happen that the complement B has a least element, in which case we remove it
from B and add it to A. To see that the set A determines a cut, we have to check that if b lies in B and a
in A then a < b. If not, then b ≤ a. Can’t have b = a, so b < a. We want to derive a contradiction, say by
showing now all a′ < a have to lie in A, including b.

Now a lies in A, so we can write a = r + s with r in Ax, s in Ay . We also have a′ < a. If we can find r′ < r
and s′ < s such that a′ = r′ + s′ then we know r′ lies in Ax and s′ lies in Ay, so that a′ also lies in A. But
if we let c = a − a′, it will be a positive rational number, and

a′ = a − c = r + s − c = (r − c/2) + (s − c/2) = r ′ + s′ .


