Commensurability

We now know quite a bit about fractions, but they are not really what I am most interested in. I am interested in the myriad of numbers out there that are not frcations. The simplest ones are square roots and their relatives, and we'll look at those first.

1. The square root of 2 is not a fraction

If $\sqrt{2}$ were a fraction, we could write it as p / q where the gcd of p and q is 1 . If

$$
\sqrt{2}=\frac{p}{q}
$$

then

$$
2=\frac{p^{2}}{q^{2}}, \quad 2 q^{2}=p^{2}
$$

Thus 2 divides p^{2}. By a result in the notes on divisibility, 2 must divide p, we can write $p=2 p \bullet$, and then get

$$
2 q^{2}=\left(2 p_{\bullet}\right)^{2}=4 p_{\bullet}^{2}, \quad q^{2}=2 p_{\bullet}^{2} .
$$

But we can repeat the argument: 2 must divide q. But this contradicts the initial assumption that p and q are relatively prime.

A similar argument will work for other square roots other than those which are actually integers. The best result that follows from a similar argument is this:
Theorem. If $r=p / q$ is a rational root of the polynomial equation

$$
A(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

where the a_{i} are integers, then p divides a_{0} and q divides a_{n}.
This implies immediately that the k-th root of N is never a fraction unless N is a perfect k-th power.
Proof. We need first
Lemma. If r is relatively prime to s then it is relatively prime to r^{n}.
Left as exercise.
If p / q is a root of $A(x)$ then

$$
a_{n} p^{n}+a_{n-1} p^{n-1} q+\cdots+a_{1} p q^{n-1}+a_{0} q^{n}=0
$$

which can be rewritten

$$
a_{n} p^{n}=-\left(a_{n-1} p^{n-1} q+\cdots+a_{1} p q^{n-1}+a_{0} q^{n}\right) .
$$

Since q divides the right, it divides ther left. Since it is relatively prime to p^{n}, it must divide a_{n}. Similarly, r must divide a_{0}.

2. The geometric Euclidean algorithm

Two line segments are said to be commensurable if they are both integral multiples of some common (smaller) segment. For example, if one segment is of unit length and the other is of length $3 / 2$ then they are both multiples of a segment of length $1 / 2$, so they are commensurable. In general, two segments are commensurable precisely when their ratio is a fraction, since if one is m times a segment and the other is n times the same segment, then the ratio is m / n.
The Euclidaen algorithm as spelled out in class was applied only to integers, but the same process will produce a common measure of any two given commensurable segments. Say the segments are a and b units long. If d is the common measure of both, then it will be the coomon measure of $a-q b$ if q is an integer. So we find q such that this has length less than b, which is always possible; swap a and b, and continue on until one segment fits into the other an even number of times.

But the converse is also true: two segments are not commensurable precisely when their ratio is not a fraction, or in other words when the geometric Euclidean algorithm dosn't stop.

Let's look at a famous example of this.
Suppose a single line segment $A C$ is partioned into smaller segments $A B$ and $B C$ with this property: The ratio of $A B$ to $A C$ is the same as the ratio of $B C$ to $A B$.

Choose units of length so that x is the length of the whole segment and 1 is that of the larger half. The length of the smaller half is $x-1$.

Let x be the length of the whole segment, and scale We can see immediately that $1<x<2$.
By definition we have an equation

$$
\frac{x}{1}=\frac{1}{x-1}
$$

which leads to

$$
x^{2}-x-1=0, \quad x=\frac{1+\sqrt{5}}{2}=1.61803398 \ldots
$$

This number is called the golden ratio.
Let's apply the Euclidean algorithm to the segments 1 and x. Since $1<x<2$, we have the first quotient $q_{0}=1$. The remainder is $r=x-1$. So now we are looking at the two segments 1 and $x-1$. But by definition the ratio $x-1:: 1$ is the same as $1:: x$. In other words, in performing one step of the Euclidean algorithm we are just scaling everything by $1 / x$. The second quotient q_{1} is again 1 .

As is the third, fourth, etc. The process never stops, and we see that the golden ratio is not a rational number.

In general, if y is any number larger thna 1 , can apply we apply the Euclidean algorithm to the intervals of length 1 and x to test whether x is a rational number or not. It will be rational if and only if the process stops. Suppose for convenience that $x>1$. The first quotient is the largest integer less than or equal to x, the floor $\lfloor x\rfloor$ of x.

We get $q_{0}=\lfloor x\rfloor, r=x-q$ with $0 \leq r<1$. Then we apply the same division to 1 and r, dividing 1 by r and setting $q_{1}=\lfloor 1 / r\rfloor$. In effect we are setting a new value of x to be $1 / r$. So we can describe the process in brief like this to find the succession of quotients:
(1) Start with $x>1$.
(2) Set $q=\lfloor x\rfloor, r=x-q$.
(3) If $r>0$, set the new value of x to be $1 / r$. Loop again to (2). Otherwise stop.

Let's try another example, $x=\sqrt{2}$. Here $1<x<2$ since $1<2<4$, so $q_{0}=1, r_{0}=\sqrt{2}-1$. Next

$$
x:=\frac{1}{\sqrt{2}-1}=\frac{\sqrt{2}+1}{\sqrt{2}+1} \frac{1}{\sqrt{2}-1}=\sqrt{2}+1
$$

The $q_{1}=2, r_{1}=(\sqrt{2}+1)-2=\sqrt{2}-1$ again. So we are looping, and the succession of quotients here is 1 , $2,2, \ldots$

These examples are typical:
Theorem. If N is not a perfect square and $x=(a+b \sqrt{N}) / c$ with integers a, b, and c then the succession of quotients is always eventually periodic and non-vanishing. Conversely, if the succession of quotients is periodic then x is of this form.
Let's looka t just one example of how to go backwards here. What number x gives rise to the succession 1 , $2,1,2, \ldots$? We have

$$
\begin{aligned}
x & =1+r_{0} \\
\frac{1}{r_{0}} & =2+r_{1} \\
\frac{1}{r_{1}} & =1+\ldots \\
& =x
\end{aligned}
$$

Therefore

$$
\begin{aligned}
r_{1} & =\frac{1}{x} \\
2+\frac{1}{x} & =r_{0} \\
& =\frac{1}{x-1} .
\end{aligned}
$$

which leads to the quadratic equation

$$
x=2 x(x-1)+(x-1), \quad 2 x^{2}-2 x-1=0
$$

