Mathematics 309 - Mid-term solutions

1. A lens consists of a half a sphere of radius R, with the flat side on the back, perpendicular to'the lens axis. A ray leaves a point at a distance $3 R$ in front of the lens at an angle of $\pi / 36$ with respect to the axis, passes through the lens, then hits the axis again somewhere on the far side. The lens has a refraction index of 1.5 . (a) Where would it hit the axis on the far side according to the linear approximation? (b) Exactly where does the ray hit?
(a) Let $T=\pi / 36$. If we assume that the initial point is on the x-axis and the point we are looking for is $(f, 0)$ then with $k=3$

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & f \\
& 1
\end{array}\right]\left[\begin{array}{cc}
1 & R / n \\
& 1
\end{array}\right]\left[\begin{array}{cc}
1 & \\
-(n-1) / R & 1
\end{array}\right]\left[\begin{array}{cc}
1 & k R \\
& 1
\end{array}\right]\left[\begin{array}{l}
0 \\
T
\end{array}\right] } & =\left[\begin{array}{ll}
1 & f \\
& 1
\end{array}\right]\left[\begin{array}{cc}
1 / n & (k+1) R / n \\
-(n-1) / R & 1-k(n-1)
\end{array}\right]\left[\begin{array}{c}
0 \\
T
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & f \\
& 1
\end{array}\right]\left[\begin{array}{c}
T(k+1) R / n \\
T(1-k(n-1))
\end{array}\right]
\end{aligned}
$$

which leads to

$$
f=\frac{(k+1) R / n}{k(n-1)-1}=(16 / 3) R
$$

If you don't assume that the initial point is on the axis, you start at say $(-4, y)$ instead. In this case the intercept will depend on y, and explicitly in a similar way you find that

$$
f=\frac{y / n+T(k+1) R / n}{T(k(n-1)-1)+y(n-1) / R} .
$$

Under the assumption that $y=0$ there is another way to do it. The point where the linear ray hits is the same as the conjugate plane since the x-axis is also a ray. Now if a lens has transfer matrix

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

and one plane sits ℓ to the left, the conjugate plane on which images from the first focus is at distance f where

$$
\left[\begin{array}{ll}
1 & f \\
& 1
\end{array}\right]\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
1 & \ell \\
& 1
\end{array}\right]
$$

has upper right entry equal to 0 . This implies that

$$
f=-\frac{A \ell+B}{C \ell+D}
$$

In our case the transfer matrix is

$$
\left[\begin{array}{cc}
1 / n & R / n \\
-(n-1) / R & 1
\end{array}\right]
$$

leading again to

$$
f=\frac{(k+1) R / n}{k(n-1)-1}=(16 / 3) R
$$

(b) Suppose the center of the lens is at $(0,0)$. May as well set $R=1$. Suppose a ray at position $P_{0}=\left(x_{0}, 0\right)$ leaves at angle t_{0}, or direction $v_{0}=\left[\cos t_{0}, \sin t_{0}\right]$. It hits at the point $\left(x_{0}, 0\right)+s\left[\cos t_{0}, \sin t_{0}\right]$ lying on the left half of the sphere. Then

$$
\begin{aligned}
\left(x_{0}+s \cos t_{0}\right)^{2}+s^{2} \sin ^{2} t_{0} & =1 \\
x_{0}^{2}+2 x_{0} s \cos t_{0}+s^{2} & =1 \\
s^{2}+\left(2 x_{0} \cos t_{0}\right) s+\left(x_{0}^{2}-1\right) & =0 \\
s & =-x_{0} \cos t_{0} \pm \sqrt{1-x_{0}^{2} \sin ^{2} t_{0}}
\end{aligned}
$$

(How would you do a quick check?) In our case, x_{0} is negative, and we choose the - sign. Let $P_{1}=$ $\left(x_{0}+s \cos t_{0}, s \sin t_{0}\right)$. Let A be the angle such that $P_{1}=(\cos A, \sin A)$, and let $B=\pi-A$, so also $P_{1}=(-\cos B, \sin B)$.
The normal vector to the sphere at P_{1} is also $[\cos A, \sin A]$. The angle of incidence is $i_{1}=t_{0}+B$. If

$$
r_{1}=\arcsin \left(\frac{\sin i_{1}}{n}\right)
$$

then the new ray direction is $v_{1}=\left[\cos t_{1}, \sin t_{1}\right]$ where $t_{1}=t_{0}-\left(i_{1}-r_{1}\right)$. The new ray starts at P_{1} in direction v_{1}. Explicitly

$$
\begin{aligned}
P_{1} & =(-0.9641,0.2656) \\
v_{1} & =[0.9994,-0.0343]
\end{aligned}
$$

It hits the back face at

$$
P_{2}=P_{1}+s v_{1}=\left(x_{1}+s \cos t_{1}, y_{1}+s \sin t_{1}\right)
$$

where $x_{2}=x_{1}+s \cos t_{1}=0$. So

$$
s_{1}=-\frac{x_{1}}{\cos t_{1}}, \quad y_{2}=y_{1}+s \sin t_{1}=y_{1}-x_{1} \tan t_{1}
$$

The new ray has incidence angle $i_{2}=t_{1}$ and refracted angle

$$
r_{2}=\arcsin \left(n \sin i_{2}\right)
$$

so the new direction is $t_{2}=t_{1}-\left(i_{2}-r_{2}\right)$.

$$
\begin{aligned}
P_{2} & =(0.0000,0.2326) \\
v_{2} & =[0.9987,-0.0514]
\end{aligned}
$$

This new ray hits the x-axis at

$$
P_{3}=P_{2}+s\left[\cos t_{2}, \sin t_{2}\right]
$$

where

$$
y_{2}+s \sin t_{2}=0, \quad s=-\frac{y_{2}}{\sin t_{2}} .
$$

Then

$$
\begin{gathered}
x_{3}=x_{2}+s \cos t_{2}=s \cos t_{2}=-\frac{y_{2}}{\tan t_{2}} . \\
P_{3}=(4.5173,0)
\end{gathered}
$$

2. A wave with a frequency of 2 cycles per second is traveling in $2 D$ at a velocity of 1 unit per second, in the direction of the vector $[-1,2]$. At time $t=0$ its crest passes through the origin. (a) Where is the location of that crest at $t=1$? (b) How far behind it is the next crest? (c) At what time does the crest just behind it pass through the origin?
(a) In one second the wave translates by $[-1,2] / \sqrt{5}$. So the wave crest after one second is the line perpendicular to $[-1,2]$ through the point $(-1,2) / \sqrt{5}$. Its equation is $-x+2 y=\sqrt{5}$.
(b) In one second, two cycles pass by. So one crest is $1 / 2$ unit behind the previous crest.
(c) $t=1 / 2$.
3. A quadruple rainbow is one associated to rays that reflect 4 times inside a raindrop. Where in the sky might you look for one at sunset?

For a rainbow of k internal reflections, the turning angle is $\tau=2(i-r)+k(180-2 r)$, where

$$
r=\arcsin \left(\frac{\sin i}{n}\right)
$$

the derivative of this respect to $y=\sin i$ is

$$
\frac{2}{\sqrt{1-y^{2}}}-\frac{2(k+1) / n}{\sqrt{1-(y / n)^{2}}}
$$

This is 0 when

$$
y= \pm \sqrt{\frac{(k+1)^{2}-n^{2}}{(k+1)^{2}-1}}
$$

Whe $n=1.33$ and $k=4$, we get

$$
\begin{aligned}
y & = \pm \sqrt{\frac{5^{2}-1.33^{2}}{5^{2}-1}} \\
& =0.9839 \\
i & =\arcsin (0.9839) \\
& =79.69^{\circ} \\
r & =47.71^{\circ} \\
\tau & =2(i-r)+k(180-2 r) \\
& =2 i+180 k-2 r(k+1) \\
& =402.26^{\circ} \\
& =42.26^{\circ}
\end{aligned}
$$

The turning angle is about 42°, which means that you would look towards the Sun to see it.

