Mathematics 309 - Homework due Wednesday, March 5 - Part I

1. Write down a formula for the deflection angle in a double rainbow as a function of incidence angle. (Let n be the index of refraction concerned.) Graph it carefully in a PostScript picture. Find its derivative with respect to i. At what angle in the sky with respect to the horizon would you see a double rainbow at sunset?

2. Consider a lens system with one lens, roughly like this:

The surface at the left has a radius of r_{1}, that at the right r_{2}, and the distance between the two is d. How far from the right lens surface is the focal plane (where rays from ∞ at the left converge)? (This distance is called the focal distance.) The radius r_{2} will be negative if the boundary curves the other way. What happens to the focal plane as r_{2} gets larger and larger, passes through ∞, then becomes negative?
3. Objects at a distance ℓ_{1} to the left of the left lens surface will focus at a distance ℓ_{2} to the right. Find a formula for ℓ_{2} in terms of ℓ_{1}. Find a formula for the magnification.
4. (a) Suppose two thin lenses with focal lengths f_{1} and f_{2} are placed a distance ℓ apart. Find the transfer matrix. Simplify it for the special case $\ell=f_{1}+f_{2}$. In this system parallel rays coming in from ∞ are changed into parallel rays coming out at the right. Explain this.
(b) This is what telescopes do. Find a formula for the angular magnification of this system, or the effective magnification of the telescope.

