Mathematics 308 — Fall 98

An animation exercise

Animation can often make mathematical proofs enormously easier to understand. In this note we shall see
how it works with Euclid’s proof of Pythagoras’ Theorem.

Euclid’s version
This from Book I of The Elements of Geometry:

Proposition 47. In right-angled triangles, the square on the side subtending the right angle is isequal to the
squares on the sides containing the right angle.

D L E

Proof. Since each of the angles BAC' and BAG is right, it follows that with a straight line BA, and at the
point A on it, the two straight lines AC' and AG not lying on the same side make the adjacent angles equal
to two right angles, therefore C A is in a straight line with AG.

For the same reason BA is also in a straight line with AH .

Since the angle DBC' equals the angle FBA, for each is right, add the angle ABC to each, therefore the
whole angle DBA equals the whole angle FBC.

Since DB equals BC, and FB equals BA, the two sides AB and BD equal the two sides FB and BC
respectively, and the angle ABD equals the angle F'BC, therefore the base AD equals the base FC, and the
triangle ABD equals the triangle F BC'.

Now the parallelogram BL is double the triangle ABD, for they have the same base BD and are in the same
parallels BD and AL. And the square GB is double the triangle F BC, for they again have the same base
FB and are in the same parallels FB and GC.

Therefore the parallelogram BL also equals the square GB.

Similarly, if AE and BK are joined, the parallelogram CL can also be proved equal to the square HC.
Therefore the whole square BDEC' equals the sum of the two squares GB and HC.

And the square BDEC is described on BC, and the squares GB and HC on BA and AC.
Therefore the square on BC equals the sum of the squares on BA and AC.

Therefore in right-angled triangles the square on the side opposite the right angle equals the sum of the
squares on the sides containing the right angle.



An animation exercise 2

Q. E. D.

Animating it

At first sight, Euclid’s proof doesn’t look appealing. The German philospher Schiller is said to have called it
a ‘proof walking on stilts’. But in fact the lack of appeal is a matter of cosmetics, and the underlying ideas
are rather elegant. The elegance can be brought out by turning his argument into an animated sequence of
pictures.

ot 2% 2
o, 2 B ) e
A, 7




An animation exercise 3

How it’s done

Doing this is entirely possible with the tools you already have at your disposal, but a few new ones will make
things more efficient.

To start with, something very simple. What are the coordinates of the point A? From an argument about
similar triangles we have

T a
a ¢
a2
r=—
c
Y b
a c
ab
Yy=—
c

So we put into our program

/c a amul b b mul add sqrt def
/x a a mul c div def
/y b a mul c div def

The major new tool will be arrays. The figures above are made up of a collection of shapes, mostly triangles
and squares, which are drawn over and over again. Of course we already know how to make up a procedure
to draw each one of these. For example, we can define

/asquare {
0 0 moveto
x y lineto
X y sub x y add lineto
y neg x lineto
} def

to draw the left hand square in Euclid’s picture, if (x,y) is the point A. We can even allow procedures to
have parameters to allow us to handle animation easily. But things will be far more efficient if we can refer
to ponts as single objects, rather than by referring to theior coordinates separately. The way to do this is to
define a point to be an array of two numbers. For example



An animation exercise 4

/A [x y] def

defines the point A to be the array with coordinates (x,y). Arrays can be of any length. How are their
entries accessed? The items in an array are indexed starting from from 0. This the first element of the array
has index 0 and the last one has index n — 1 if there are n items altogether. If A is an array then A 0 get
returns its first element and A i ge returns its i-th. Furthermore, A length returns the number of items in
it. For example, the sequence

A O get A 1 get moveto
B 0 get B 1 get lineto

will construct the line from A to B.

We can also think of shapes themselves as arrays—i.e. as an array of points. Therefore we might represent
the square on a as the array [A G F B]. And we can define a procedure which has sucj an array as a single
argument and constructs the path it determines:

% A polygon = array of at least one point
% This procedure has an array P of points [x y]
% as argument and builds the path P[0] ... P[n-1]

/mkpolygon {
2 dict begin
/poly exch def
/n poly length def
poly O get
aload pop moveto
11n1sub{
% i on stack
poly exch get
aload pop lineto
} for
end
} def

Note that the path is not closed up, so we have to do that ourselves after calling it, we want a closed path.
Here I have used the commnad aload which has the following effect: if a is an array then a aload unpacks
the array a, puts its contents on the stack, and also a copy of a itself. Thus

[x y] aload pop

puts on the stack

xy [xy]

Therefore [x y] aload pop just puts x y on the stack.

Using arrays for points can also make animation easier. In animating, we frequently want to construct a
series of evenly spaced points starting at one point P and ending up at another point (). This is called
linearly interpolating the points P and (). For this we need to know that the point ¢ of the way from P to
Q is given by the formula

(1-t)P+tQ=P+t(Q—P).

Here is a PostScript procedure which implements this formula:

/interpolate {
4 dict begin
/t exch def

/s 1 t sub def
/Q exch def

/P exch def

[



An animation exercise 5

P O get s mul Q O get t mul add
P1get smul Q 1 get t mul add
]
end
} def

Finally, it will help if we have our own procedures to rotate points, instaed of relying on PostScript’s rotate
command.

% P t => P rotated by t

/rotate-2d {

4 dict begin

/t exch def

/P exch def

/c t cos def

/s t sin def

L
P O get c mul P 1 get s mul sub
P O get s mul P 1 get ¢ mul add

]

end

} def

We can even rotate whole polygons.

% polygon t

/rotate-polygon {
4 dict begin
/t exch def
/poly exch def
/n poly length def
[
01n1sub{
poly exch get t rotate-2d
} for
]
end
} def

We can now see how all these work together. In the course of drawing the figures above, we show a certain
triangle rotating. We do this by

newpath

[B D A] t rotate-polygon mkpolygon
closepath

gsave

blue

fill

grestore

stroke

We can also shear:

newpath

[BDMA t interpolate] mkpolygon
closepath

gsave

blue



An animation exercise 6

fill
grestore
stroke

But is it really Euclid?

The sequence of figures does not follow Euclid’s argument exactly, but nonetheless almost everything Euclid
mentions plays a role in the graphics. And of course the pictures themselves do not provide a real proof, but
only suggest one. To get it all, one has to add details explaining why the figures work. Sample questions
one could ask are: Where does Euclid’s initial argument about straight lines come in? What does it take
to justify the rotation sequence? But it is undeniable that the pictures not only suggest answers to these
questions, and even suggest others, but also interest one in a second look at Euclid’s argument.



