Mathematics 308 - Homework 4 - due Friday, November 1

1. (a) Find by hand calculation the matrix describing the transformation from user to page coordinates at each line in this PS programs (several matrices):
```
%!
```

100100 translate
7236 scale

32 rotate
[1 $110 c c c c c]$ concat
(b) Construct procedures Translate, Scale, Rotate, Concat that effect the corresponding coordinate changes and simultaneously display by $==$ the current user-to-page matrix. Show how it works on the code above, in order to check your hand calculation.
(c) Write a PostScript program that displays on separate pages the figure which in user coordinates is the unit square with diagonal $(0,0)-(1,1)$, after each of the changes above.
2. Write down the equation in user coordinates of the line whose equation in page coordinates is $2 x+y=200$, after each of the coordinate transformations in question $\# 1$. Verify that your equation is correct by drawing in PostScript that line on separate pages, in the different user coordinate systems.
3. Construct a procedure projective with one argument, an array of four 2 D points (x, y), that returns a 3×3 projective matrix moving these four points into $(0,0),(1,0),(0,1)$, and $(1,1)$. Show how this works by drawing at least two examples of what my image manipulation program does: draws the initial four points on one page in a rectangle, along with a square grid, underneath it in medium gray, then draws the transform of this image by the matrix on the next page.

