Mathematics 307-October 11, 1995

The geometry of linear transformations in two dimensions
Fix a basis e_{1}, e_{2} for a plane. Having chosen this basis, certain standard linear transformations can be specified.

The identity map

It takes any point to itself. It takes e_{1} to e_{1} and e_{2} to e_{2}. Its matrix is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Reflection in the y-axis

It takes e_{1} to $-e_{1}, e_{2}$ to itself. The matrix is

$$
\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] .
$$

Uniform scaling by c

It takes any x to $c x$. Its matrix is

$$
\left[\begin{array}{ll}
c & 0 \\
0 & c
\end{array}\right]
$$

Non-uniform scaling

Suppose we scale along the x-axis by a and along the y-axis by b. The matrix is

$$
\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] .
$$

Projection

A special case of scaling is where we do no scaling in the \boldsymbol{x}-direction, but collapse completely vertically. This amounts to perpendicular or orthogonal projection onto the \boldsymbol{x}-axis. The matrix is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Rotation

Rotation in the positive direction (counter-clockwise) by θ has matrix

$$
\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Shear

Sliding parallel to the x-axis is called a horizontal shear. The matrix is of the form

$$
\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]
$$

