Mathematics 307—October 11, 1995

The geometry of linear transformations in two dimensions

Fix a basis e_1 , e_2 for a plane. Having chosen this basis, certain standard linear transformations can be specified.

The identity map

It takes any point to itself. It takes e_1 to e_1 and e_2 to e_2 . Its matrix is

$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \ .$

Reflection in the *y*-axis

It takes e_1 to $-e_1$, e_2 to itself. The matrix is

 $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \ .$

⇒

Uniform scaling by c

It takes any x to cx. Its matrix is

$$\begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix} \ .$$

Non-uniform scaling

Suppose we scale along the x-axis by a and along the y-axis by b. The matrix is

6	ı	0	
[)	b	•

Projection

A special case of scaling is where we do no scaling in the x-direction, but collapse completely vertically. This amounts to **perpendicular** or **orthogonal projection** onto the x-axis. The matrix is

[1	0	
0	0	•

Rotation

Rotation in the positive direction (counter-clockwise) by θ has matrix

$\cos \theta$	$-\sin\theta$	
$\sin \theta$	$\cos heta$	•

Shear

Sliding parallel to the x-axis is called a **horizontal shear**. The matrix is of the form

 $\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} .$