Mathematics 307—September 25, 1995

Symmetric matrices

A symmetric matrix is one which is identical to its own transpose.

Proposition. The eigenvalues of a symmetric matrix are all real. If u and v are eigenvectors for distinct eigenvalues then $u \cdot v = 0$.

The basic property from which these results follow is this: if M is any matrix and u and v are arbitrary vectors then

$$M u \bullet v = u \bullet {}^t M v$$
.

This is because the dot product can be described in terms of a matrix product and transposition: if u and v are column vectors then

$$u \bullet v = {}^t u v$$

where the product on the right is the matrix product of the row vector ^{t}U and the column vector v. Therefore

$$Mu \bullet v = {}^t(Mu) v = {}^tu {}^tMv = u \bullet {}^tMv .$$

Lemma. If M is symmetric then

$$Mu \bullet v = u \bullet Mv$$
.

Suppose now that M is symmetric, λ an eigenvalue, u a (possibly complex) eigenvector. Then

$$Mu = \lambda u$$
$$M\overline{u} = \overline{\lambda}\overline{u}$$
$$Mu \bullet \overline{u} = \lambda u \bullet \overline{u}$$
$$= u \bullet M\overline{u}$$
$$= u \bullet \overline{\lambda}\overline{u}$$
$$= \overline{\lambda} u\overline{u}$$

Here \overline{x} means the complex conjugate of x. Since

$$u \bullet \overline{u} = u_1 \overline{u}_1 + \dots + u_n \overline{u}_n$$

and $z\overline{z} \ge 0$ unless z = 0, we see that $\lambda = \overline{\lambda}$, which means that λ is real.

If $Mu = \lambda u$, $Mv = \mu v$ then

$$Mu \bullet v = \lambda (u \bullet v) = u \bullet Mv = \mu (u \bullet v)$$

so that if $\lambda \neq \mu$, $u \bullet v = 0$. Q.E.D.

Corollary. If T is a linear transformation with a symmetric matrix then we can find an orthonormal basis of eigenvectors for T.

Since we can always change the sign of an eigenvector if necessary:

Corollary. If M is a symmetric matrix then we can find a special orthogonal matrix X such that $X^{-1}MX$ is diagonal.

In other words, the linear transformations associated to symmetric matrices amount to scale changes in perpendicular directions—perhaps the simplest of all linear transformations to visualize.