Mathematics 307-September 25, 1995

Symmetric matrices

A symmetric matrix is one which is identical to its own transpose.
Proposition. The eigenvalues of a symmetric matrix are all real. If u and v are eigenvectors for distinct eigenvalues then $u \bullet v=0$.

The basic property from which these results follow is this: if M is any matrix and u and v are arbitrary vectors then

$$
M u \bullet v=u \bullet{ }^{t} M v
$$

This is because the dot product can be described in terms of a matrix product and transposition: if u and v are column vectors then

$$
u \bullet v={ }^{t} u v
$$

where the product on the right is the matrix product of the row vector ${ }^{t} U$ and the column vector v. Therefore

$$
M u \bullet v={ }^{t}(M u) v={ }^{t} u^{t} M v=u \bullet{ }^{t} M v
$$

Lemma. If M is symmetric then

$$
M u \bullet v=u \bullet M v .
$$

Suppose now that M is symmetric, λ an eigenvalue, u a (possibly complex) eigenvector. Then

$$
\begin{aligned}
M u & =\lambda u \\
M \bar{u} & =\bar{\lambda} \bar{u} \\
M u \bullet \bar{u} & =\lambda u \bullet \bar{u} \\
& =u \bullet M \bar{u} \\
& =u \bullet \bar{\lambda} \bar{u} \\
& =\bar{\lambda} u \bar{u}
\end{aligned}
$$

Here \bar{x} means the complex conjugate of \boldsymbol{x}. Since

$$
u \bullet \bar{u}=u_{1} \bar{u}_{1}+\cdots+u_{n} \bar{u}_{n}
$$

and $z \bar{z} \geq 0$ unless $z=0$, we see that $\lambda=\bar{\lambda}$, which means that λ is real.
If $M u=\lambda u, M v=\mu v$ then

$$
M u \bullet v=\lambda(u \bullet v)=u \bullet M v=\mu(u \bullet v)
$$

so that if $\lambda \neq \mu, u \bullet v=0$. Q.E.D.
Corollary. If T is a linear transformation with a symmetric matrix then we can find an orthonormal basis of eigenvectors for T.

Since we can always change the sign of an eigenvector if necessary:
Corollary. If M is a symmetric matrix then we can find a special orthogonal matrix X such that $X^{-1} M X$ is diagonal.

In other words, the linear transformations associated to symmetric matrices amount to scale changes in perpendicular directions-perhaps the simplest of all linear transformations to visualize.

