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Matrices and quadratic functions

It very often happens in applications that the coe�cient matrixA of a system of linear equations is symmetric,
and that no row swapping is necessary in order to solve it by Gauss elimination. In this case we shall have
the factorization

A = LU :

We can write
U = DL�

where D is a diagonal matrix whose entries are the same as the diagonal of U , and L� is an upper triangular
matrix all of whose diagonal entries are 1. Because A is symmetric, L� turns out to be the transpose of L,
and we can write

A = LD tL :

In this section I want to explain the signi�cance of this factorization. It involves a new interpretation of
matrices, at least of symmetric ones, which is just as important as their interpretation in terms of linear
transformations.

Drawing quadratic curves

I will begin with a fairly elementary problem. What does the curve

F (x; y) = 9x2 � 4xy + 6y2 = 1

look like?

The equation looks something like the equation for a circle, but it is di�cult to see directly how relevant this
is. We can answer one question however, without too much trouble: Are there points on the curve very far

from the origin? Suppose that (x; y) lies on the curve and that jyj is very large. If we divide the equation
by y2 we get
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If y is large enough, the ratio x=y will be arbitrarily close to a root of the equation

9r2 � 4r + 6 = 0 :

However, we can check easily that the roots of this equation are complex. Similarly x cannot be large.
Therefore the curve is bounded.

Since it is bounded, we can try to locate the points on the curve which are furthest from the origin. Suppose
(x; y) is at maximum distance. Then, as the following picture shows, the position vector (x; y) must be
parallel to the gradient (@F=@x; @F=@y) of the function F (x; y) at that point.
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Since
@F

@x
= 18x� 4y

@F

@y
= �4x+ 12y

we then have
18x� 4y = cx

�4x+ 12y = cy

for some scalar c. In other words, the vector (x; y) must be an eigenvector for the matrix
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with eigenvalue c! The eigenvalues of this matrix are

c = 10; 20

and the eigenvectors are the multiples of �
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Notice that they are perpendicular to each other, as they have to be since the matrix is symmetric. To �nd
points on the curve which are eigenvectors we set

(x; y) = (a; 2a)

and solve
9x2 � 4xy + 6y2 = 9a2 � 8a2 + 24a2 = 25a2 = 1

to get a = �1=5, (x; y) = �(1=5; 2=5), and similarly

9x2 � 4xy + 6y2 = 36a2 + 8a2 + 6a2 = 50a2 = 1

to get a = �1=p50, (x; y) = �(2=p50;�1=p50). If we plot these points in the plane we get the picture



Matrices and quadratic functions 3

It certainly looks as if the curve might be an elipse, with major and minor axes through the points in the
picture. How can we tell for sure? We can change coordinates so that the new coordinate axes lie on what we

hope to be the axes of the ellipse, and see if the equation of the curve in the new coordinates is recognizably

that of an ellipse.

The new coordinate axes are going to point in the directions of what are (1; 2) and (�2; 1) in the old
coordinates. The new coordinates can therefore be chosen as

x� = x+ 2y

y� = 2x� y

since then the equations x� = 0 and y� = 0 are what we want as the new axes. This change of coordinates
is not orthogonal, but it is the combination of an orthogonal change of coordinates with a uniform scale
change, and therefore preserves shape.

We want to �nd the new equation for the curve expressed in terms of x� and y�, and to do this we must
substitute for x and y in terms of x� and y�. If we solve the system above we get

x =
x� + 2y�

5

y =
2x� � y�

5

and if we substitute into the equation of the curve we get

1

25
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2] = 1

or
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�
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This is the equation of an ellipse with its major axis equal to the x� axis, and minor axis equal to the y� axis.
The sizes are di�erent from that of the original, since the coordinate change we made was not orthogonal.
The ratio of the size of the axes is

p
2.


