Mathematics 307—October 11, 1995

Projections

The projection of a vector \mathbf{u} onto a line ℓ is the vector you get by dropping a perpendicular from the head of \mathbf{u} onto ℓ. If we are given a vector \mathbf{v} pointing in the direction of that line, the projection will be a scalar multiple of \mathbf{v}. The signed length of the projection is

$$
\|\mathbf{u}\| \cos \theta=\frac{\mathbf{u} \bullet \mathbf{v}}{\|\mathbf{v}\|} .
$$

It will be positive if the projection is on the same side as \mathbf{v}, zero if the projection vanishes, otherwise negative. In other words:

The projection of \mathbf{u} onto the line through \mathbf{v} is the same as the vector

$$
\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|} \frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} .
$$

Now let P be the plane perpendicular to the vector \mathbf{v}. Any vector \mathbf{u} can be expressed as the sum of its two components, one parallel to \mathbf{v} and one perpendicular to it. The perpendicular component is the perpendicular projection of \mathbf{u} onto the plane P. The formula for it is therefore

$$
\mathbf{u}-\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}
$$

Let T be the linear transformation taking a vector to its perpendicular projection along the line through \mathbf{u}. Its matrix has as its columns the images of $\mathbf{i}, \mathbf{j}, \mathbf{k}$. It is therefore

$$
\frac{1}{\|\mathbf{v}\|^{2}}\left[\begin{array}{lll}
\mathbf{v}_{x} \mathbf{v}_{x} & \mathbf{v}_{y} \mathbf{v}_{x} & \mathbf{v}_{z} \mathbf{v}_{x} \\
\mathbf{v}_{x} \mathbf{v}_{y} & \mathbf{v}_{y} \mathbf{v}_{y} & \mathbf{v}_{z} \mathbf{v}_{y} \\
\mathbf{v}_{x} \mathbf{v}_{z} & \mathbf{v}_{y} \mathbf{v}_{z} & \mathbf{v}_{z} \mathbf{v}_{z}
\end{array}\right]
$$

and the matrix of the complementary projection is

$$
\begin{aligned}
& I-\frac{1}{\|\mathbf{v}\|^{2}}\left[\begin{array}{ccc}
\mathbf{v}_{x} \mathbf{v}_{x} & \mathbf{v}_{y} \mathbf{v}_{x} & \mathbf{v}_{z} \mathbf{v}_{x} \\
\mathbf{v}_{x} \mathbf{v}_{y} & \mathbf{v}_{y} \mathbf{v}_{y} & \mathbf{v}_{z} \mathbf{v}_{y} \\
\mathbf{v}_{x} \mathbf{v}_{z} & \mathbf{v}_{y} \mathbf{v}_{z} & \mathbf{v}_{z} \mathbf{v}_{z}
\end{array}\right] \\
& =\frac{1}{\|\mathbf{v}\|^{2}}\left[\begin{array}{ccc}
\mathbf{v}_{x} \mathbf{v}_{x}+\mathbf{v}_{y} \mathbf{v}_{y}+\mathbf{v}_{z} \mathbf{v}_{z} & 0 & 0 \\
0 & \mathbf{v}_{x} \mathbf{v}_{x}+\mathbf{v}_{y} \mathbf{v}_{y}+\mathbf{v}_{z} \mathbf{v}_{z} & 0 \\
0 & 0 & \mathbf{v}_{x} \mathbf{v}_{x}+\mathbf{v}_{y} \mathbf{v}_{y}+\mathbf{v}_{z} \mathbf{v}_{z}
\end{array}\right]-\frac{1}{\|\mathbf{v}\|^{2}}\left[\begin{array}{ccc}
\mathbf{v}_{x} \mathbf{v}_{x} & \mathbf{v}_{y} \mathbf{v}_{x} & \mathbf{v}_{z} \mathbf{v}_{x} \\
\mathbf{v}_{x} \mathbf{v}_{y} & \mathbf{v}_{y} \mathbf{v}_{y} & \mathbf{v}_{z} \mathbf{v}_{y} \\
\mathbf{v}_{x} \mathbf{v}_{z} & \mathbf{v}_{y} \mathbf{v}_{z} & \mathbf{v}_{z} \mathbf{v}_{z}
\end{array}\right] \\
& =\frac{1}{\|\mathbf{v}\|^{2}}\left[\begin{array}{ccc}
\mathbf{v}_{y} \mathbf{v}_{y}+\mathbf{v}_{z} \mathbf{v}_{z} & -\mathbf{v}_{y} \mathbf{v}_{x} & -\mathbf{v}_{z} \mathbf{v}_{x} \\
-\mathbf{v}_{x} \mathbf{v}_{y} & \mathbf{v}_{x} \mathbf{v}_{x}+\mathbf{v}_{z} \mathbf{v}_{z} & -\mathbf{v}_{z} \mathbf{v}_{y} \\
-\mathbf{v}_{x} \mathbf{v}_{z} & -\mathbf{v}_{y} \mathbf{v}_{z} & \mathbf{v}_{x} \mathbf{v}_{x}+\mathbf{v}_{y} \mathbf{v}_{y}
\end{array}\right]
\end{aligned}
$$

There is one other formula involving projections which we shall need later.
Proposition. For any $3 D$ vectors u and v

$$
u \times(v \times u)
$$

is equal to $\|u\|^{2}$ times the projection of v onto the plane perpendicular to u.
For the proof, we may as well divide by $\|u\|^{2}$, and can assume that $\|u\|=1$. If v has the same direction as u then $u \times(v \times u)$ vanishes, as does the projection. If v is perpendicular to u then $v \times u$ is equal to v rotated by -90° around u, and u crossed with this in turn rotates it back to v. Thus also agrees with the projection. Since both the expression $u \times(v \times u)$ and the projection of v are linear in v, this proves the claim.
This also follows from the more general formula

$$
u \times(v \times w)=(u \bullet w) v-(u \bullet v) w .
$$

The triple product is perpendicular to both u and to $v \times w$. Since it is perpendicular to $v \times w$ it must lie in the plane containing v and w, hence will be a linear combination of v and w. The formula just finds the coefficients of this linear combination explicitly. To prove it, write v as a sum of two components v_{0} and v_{\perp}, the first parallel to w and the second perpendicular to it. It suffices to deal with each component separately. For $v_{0}=c w$ the formula asserts that $0=0$. Thus we may as well assume v is perpendicular to w. We amy also divide both sides by $\|v\|$ and $\|w\|$ and hence may assume v and w to be of length 1 as well as perpendicular. In that case $v \times w$ also has length 1 and makes up a rectangular frame together with v and w. We may choose these three vectors as basis. In this case the calculation is very simple.

