Mathematics 307—October 23, 1995

Mid-term solutions

1. Classify the following matrices by writing out the standard matrices they are similar to. In the case of $3 D$ rotations, find the axis of rotation. In the case of $2 D$ scale changes, draw the lines of eigenvectors.
(a) $\left[\begin{array}{rr}2.64 & -0.48 \\ -0.48 & 2.36\end{array}\right]$
(b) $\left[\begin{array}{ll}5 & -4 \\ 9 & -7\end{array}\right]$
(c) $\left[\begin{array}{rrr}3 & 7 & -3 \\ 0 & 0 & 1 \\ 1 & 1 & 2\end{array}\right]$
(d) $\left[\begin{array}{rrr}0.899519 & -0.404006 & -0.166266 \\ 0.345994 & 0.891146 & -0.293510 \\ 0.266747 & 0.206490 & 0.941386\end{array}\right]$
(e) $\left[\begin{array}{rrr}6 & -1 & -9 \\ -9 & 2 & 15 \\ 5 & 1 & -4\end{array}\right]$
(a) The characteristic polynomial is $\lambda^{2}-5 \lambda+6$ and the matrix is therefore similar to the scale change

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]
$$

The eigenvectors for 2 are the line

$$
0.64 x-0.48 y=0
$$

which goes through $(3,4)$. The other eigenvectors lie on the line perpendicular to this one.
(b) The characteristic polynomial is $\lambda^{2}+2 \lambda+1$. The matrix is not a scalar matrix, so it is similar to the generalized shear

$$
\left[\begin{array}{rr}
-1 & 1 \\
0 & -1
\end{array}\right]
$$

(c) The characteristic polynomial is $\lambda^{3}-5 \lambda^{2}+8 \lambda-4=(\lambda-1)(\lambda-2)^{2}$. The rank of $A-2 I$ is two, so the matrix is similar to

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

(d) This is a special orthogonal matrix, therefore a rotation. The axis is made up of eigenvectors for 1, which are multiplies of $(0.500,-0.433,0.750)$. The trace of the matrix is 2.732 . The matrix is similar to some rotation matrix

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

It must have the same characteristic polynomial as any similar matrix, so we have

$$
2.732=1+2 \cos \theta
$$

if θ is the angle of rotation. So $\theta= \pm 30^{\circ}$.
(e) Characteristic polynomial $\lambda^{3}-4 \lambda^{2}+\lambda+6$, similar to a diagonal matrix with entries $-1,2,3$.
2. (a) What is the perpendicular projection of $(1,1,-1)$ onto the plane $x-y+2 z=0$?
(b) What is the perpendicular reflection of $(1,1,-1)$ through the plane $x-y+2 z=0$?
(c) What is the matrix of perpendicular reflection through the plane $x-y+2 z=0$?

Let $u=(1,1,-1), v=(1,-1,2)$.
(a) The projection of u onto the line through v is

$$
u_{0}=\frac{u \bullet v}{v \bullet v} v=(-1 / 3,1 / 3,-2 / 3)
$$

Its complementary projection is

$$
u_{\perp}=u-u_{0}=(1,1,-1)-(-1 / 3,1 / 3,-2 / 3)=(4 / 3,2 / 3,-1 / 3)
$$

(b) Its reflection is

$$
u-2 u_{0}=u_{\perp}-u_{0}=(4 / 3,2 / 3,-1 / 3)-(-1 / 3,1 / 3,-2 / 3)=(5 / 3,1 / 3,1 / 3)
$$

(c) The fastest way to compute the matrix is to apply the same procedure to $\mathbf{i}, \mathbf{j}, \mathbf{k}$. We get

$$
\frac{1}{6}\left[\begin{array}{rrr}
4 & 2 & -4 \\
2 & 4 & 4 \\
-4 & 4 & -2
\end{array}\right]
$$

We can also use the formula for the matrix of perpendicular projection to find the formula here to be

$$
\frac{1}{\|v\|^{2}}\left[\begin{array}{rrr}
-v_{x}^{2}+v_{y}^{2}+v_{z}^{2} & -2 v_{x} v_{y} & -2 v_{x} v_{z} \\
-2 v_{x} v_{y} & v_{x}^{2}-v_{y}^{2}+v_{z}^{2} & -2 v_{y} v_{z} \\
-2 v_{x} v_{z} & -2 v_{y} v_{z} & v_{x}^{2}+v_{y}^{2}-v_{z}^{2}
\end{array}\right]
$$

3. In the (x, y, z) coordinate system, the matrix of a certain linear transformation is

$$
M=\left[\begin{array}{rrr}
-2 & -1 & -2 \\
-3 & 0 & -2 \\
6 & 2 & 5
\end{array}\right]
$$

Now make up a new basis from the vectors whose coordinates in the (x, y, z) system are $(0,-2,1),(2,0,-3)$. $(0,0,1)$.
(a) What is the matrix of T in this system?
(b) Use the previous result to find a matrix X such that $X^{-1} M X$ is one of the standard forms, and write down that form.

Call u_{1}, u_{2}, u_{3} the vectors of the new basis F.
Thus

$$
F=\left[\begin{array}{rrr}
0 & 2 & 0 \\
-2 & 0 & 0 \\
1 & -3 & 1
\end{array}\right], \quad F^{-1}=\left[\begin{array}{rrr}
0 & -1 / 2 & 0 \\
1 / 2 & 0 & 0 \\
3 / 2 & 1 / 2 & 1
\end{array}\right]
$$

since the determinant of F is 4 . The new matrix is $F^{-1} M_{E} F$ which is

$$
\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

This is very near a standard form. It says that

$$
\begin{aligned}
& T u_{1}=u_{1} \\
& T u_{2}=u_{2} \\
& T u_{3}=u_{3}-u_{2}+u_{1}
\end{aligned}
$$

and a slight change of basis $v_{1}=u_{1}, v_{2}=-u_{2}+u_{1}, v_{3}=u_{3}$ makes it into the standard form

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

4. Let T be the linear operator taking f to f^{\prime} acting on the space of functions of the form $P(x) \cos \omega x+$ $Q(x) \sin \omega x$ where P and Q are polynomials of degree at most one.
(a) Choose a basis for this vector space, and write down the matrix of T.
(b) Find its eigenvalues and eigenvectors.

Differentiation takes

$$
\begin{gathered}
\cos \omega x \mapsto-\omega \sin \omega x \\
\sin \omega x \mapsto \omega \cos \omega x \\
x \cos \omega x \mapsto-\omega \sin \omega x+\cos \omega x \\
x \sin \omega x \mapsto \omega \cos \omega x+\sin \omega x
\end{gathered}
$$

and therefore the matrix is

$$
M=\left[\begin{array}{cccc}
0 & \omega & 1 & 0 \\
-\omega & 0 & 0 & 1 \\
0 & 0 & 0 & \omega \\
0 & 0 & -\omega & 0
\end{array}\right]
$$

Then

$$
M-\lambda I=\left[\begin{array}{cccc}
-\lambda & \omega & 1 & 0 \\
-\omega & -\lambda & 0 & 1 \\
0 & 0 & -\lambda & \omega \\
0 & 0 & -\omega & -\lambda
\end{array}\right]
$$

Its determinant is the square of that of

$$
\left[\begin{array}{rr}
\lambda & \omega \\
-\omega & -\lambda
\end{array}\right]
$$

which is $\left(\lambda+\omega^{2}\right)$. Its eigenvalues are $\lambda= \pm i \omega$, repeated twice. The matrix $M-\lambda I$ has rank 3 , and the eigenvectors are the functions $\cos \omega x \mp i \sin \omega x$.
5. An object is assembled from three masses $m_{1}=1, m_{2}=3, m_{3}=2$. They are located respectively at coordinates

$$
\begin{aligned}
& \left(x_{1}, y_{1}, z_{1}\right)=\left(\begin{array}{lll}
-1, & 1, & 0
\end{array}\right) \\
& \left(x_{2}, y_{2}, z_{2}\right)=\left(\begin{array}{ccc}
1, & 1, & 0
\end{array}\right) \\
& \left(x_{3}, y_{3}, z_{3}\right)=\left(\begin{array}{ccc}
1, & 2, & 0
\end{array}\right)
\end{aligned}
$$

Find (a) the centre of gravity of the object and (b) its principal axes through its centre of gravity.
All moments with a z factor vanish. For the others we make up a table

m	x	y	$m x$	$m y$	$m x^{2}$	$m x y$	$m y^{2}$
1	-1	1	-1	1	1	-1	1
3	1	1	3	3	3	3	3
2	1	2	2	4	2	4	8
M			M_{x}	M_{y}	$M_{x x}$	$M_{x y}$	$M_{y y}$
6			4	8	6	6	12

(a) The centre of gravity is

$$
\left(M_{x} / M, M_{y} / M, 0\right)=(2 / 3,4 / 3,0)
$$

(b) The moments around the c.g. are

$$
\begin{aligned}
M_{x x}^{*} & =M_{x x}-M_{x}^{2} / M \\
& =10 / 3 \\
M_{x y}^{*} & =M_{x y}-M_{x} M_{y} / M \\
& =2 / 3 \\
M_{y y}^{*} & =M_{y y}-M_{y}^{2} / M \\
& =4 / 3
\end{aligned}
$$

The matrix \mathcal{I} is therefore

$$
\left[\begin{array}{rrr}
M_{y y}^{*} & -M_{x y}^{*} & 0 \\
-M_{x y}^{*} & M_{x x}^{*} & 0 \\
0 & 0 & M_{x x}^{*}+M_{y y}^{*}
\end{array}\right]
$$

Its eigenvectors are the z-axis and the eigenvectors for the matrix

$$
\left[\begin{array}{rr}
M_{y y}^{*} & -M_{x y}^{*} \\
-M_{x y}^{*} & M_{x x}^{*}
\end{array}\right]=\frac{2}{3}\left[\begin{array}{rr}
5 & -1 \\
-1 & 2
\end{array}\right]
$$

