Mathematics 307—December 6, 1995

Generalized eigenvalues and conservative systems

Assume M positive definite. To solve

$$
M x^{\prime \prime}+K x=0
$$

we convert it into a first order system by setting

$$
y=M x
$$

and getting

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]^{\prime}=\left[\begin{array}{cc}
0 & M^{-1} \\
-K & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

or

$$
v^{\prime}=A v, \quad v=e^{A t} v_{0}
$$

We apply Gauss elimination to factor

$$
M=L^{t} L, \quad M^{-1}={ }^{t} L^{-1} L^{-1}, \quad{ }^{t} L M^{-1} L=I
$$

and then multiply

$$
\left[\begin{array}{ll}
{ }^{t} L & 0 \\
0 & L^{-1}
\end{array}\right]\left[\begin{array}{cc}
0 & M^{-1} \\
-K & 0
\end{array}\right]\left[\begin{array}{cc}
{ }^{t} L^{-1} & 0 \\
0 & L
\end{array}\right]=\left[\begin{array}{cc}
0 & I \\
-L^{-1} K^{t} L^{-1} & 0
\end{array}\right]
$$

The matrix

$$
K_{*}=L^{-1} K^{t} L^{-1}
$$

is still symmetric. We can find an orthogonal X such that

$$
X^{-1} K_{*} X=D
$$

where D is diagonal. So

$$
\left[\begin{array}{ll}
X^{-1} & 0 \\
0 & X^{-1}
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
-K_{*} & 0
\end{array}\right]\left[\begin{array}{cc}
X & 0 \\
0 & X
\end{array}\right]=\left[\begin{array}{rr}
0 & I \\
-D & 0
\end{array}\right]
$$

Finally we use

$$
\left[\begin{array}{ll}
\omega & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
0 & 1 \\
-k & 0
\end{array}\right]\left[\begin{array}{ll}
\omega^{-1} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
0 & \omega \\
-\omega & 0
\end{array}\right]
$$

if $\omega=\sqrt{k}$. So we set

$$
\Omega=\left[\begin{array}{cccc}
\omega_{1} & 0 & 0 & \cdots \\
0 & \omega_{2} & 0 & \cdots \\
0 & 0 & \omega_{3} & \cdots \\
\cdots & &
\end{array}\right]
$$

and get

$$
\left[\begin{array}{cc}
\Omega & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
-D & 0
\end{array}\right]\left[\begin{array}{ll}
\Omega^{-1} & 0 \\
0 & I
\end{array}\right]=\left[\begin{array}{rc}
0 & \Omega \\
-\Omega & 0
\end{array}\right]=C
$$

Thus if

$$
\begin{aligned}
Y & =\left[\begin{array}{ll}
\Omega & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
X^{-1} & 0 \\
0 & X^{-1}
\end{array}\right]\left[\begin{array}{cc}
{ }^{t} L & 0 \\
0 & L^{-1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\Omega X^{-1 t} L & 0 \\
0 & X^{-1} L^{-1}
\end{array}\right] \\
Y^{-1} & =\left[\begin{array}{cc}
{ }^{t} L^{-1} X \Omega^{-1} & 0 \\
0 & L X
\end{array}\right]
\end{aligned}
$$

then

$$
Y A Y^{-1}=\left[\begin{array}{rc}
0 & \Omega \\
-\Omega & 0
\end{array}\right], \quad A=Y^{-1} A Y, \quad e^{A t}=Y^{-1} e^{C t} Y
$$

Finally

$$
e^{C t}=\left[\begin{array}{rr}
\cos \omega_{i} t & -\sin \omega_{i} t \\
\sin \omega_{i} t & \cos \omega_{i} t
\end{array}\right]
$$

Lower triangular systems

We want to find x such that $L x=c$. We find x_{0}, x_{1} etc.

$$
\begin{aligned}
\ell_{0,0} x_{0} & =c_{0} \\
\ell_{i, 0} x_{0}+\ell_{i, 1} x_{1}+\cdots+\ell_{i, i} x_{i} & =c_{i} \\
x_{0} & =c_{0} / \ell_{0,0} \\
x_{i} & =c_{i}-\ell_{i, 0} x_{0}-\ell_{i, 1} x_{1}-\cdots
\end{aligned}
$$

We will call this with a parameter n, the dimension, so we can use partial vectors anmd matrices.

Cholesky factorization

We have

$$
\left[\begin{array}{ll}
\lambda & 0 \\
\ell & \Lambda
\end{array}\right]\left[\begin{array}{cc}
\lambda & { }^{t} \ell \\
0 & { }^{t} \Lambda
\end{array}\right]=\left[\begin{array}{cc}
\alpha & { }^{t} a \\
a & A
\end{array}\right]
$$

which we solve by induction.

$$
\begin{aligned}
\lambda^{2} & =\alpha \\
\lambda \ell & =a \\
\ell & =\lambda^{-1} a \\
\ell^{t} \ell+\Lambda^{t} \Lambda & =A \\
\Lambda^{t} \Lambda & =A-\ell^{t} \ell
\end{aligned}
$$

Note that $\ell^{t} \ell$ is a square matrix with entries $\ell_{i} \ell_{j}$.
For $i=0$ to $n-2$
$\lambda=\ell_{i, i}:=\sqrt{m_{i, i}}$
for $j=i+1$ to $n-1$ $\ell_{j, i}:=m_{j, i} / \lambda$
for $j=i+1$ to $n-1$
for $k=i+1$ to j
$\ell_{n-1, n-1}:=\sqrt{m_{j, k}:=m_{j, k}-\ell_{j, i} \ell_{k, i}}$

Lower triangular inverses

To solve

$$
\left[\begin{array}{ll}
\chi & 0 \\
x & X
\end{array}\right]\left[\begin{array}{ll}
\lambda & 0 \\
\ell & \Lambda
\end{array}\right]=I
$$

or

$$
\chi \lambda=1, \quad \lambda x+X \ell=0
$$

is the easiest way to do it inductively. Note that we should also have a routine for finding $L x$ where L is lower triangular.

