Mathematics 307—December 6, 1995

Finding the matrices of linear transformations

I recall here for quick reference:

Proposition. Suppose that T is a linear transformation, E and F bases. Let M_E be the matrix of T in the E-coordinate system, M_F that in the F-coordinate system. If F = E A expresses the relationship between the two coordinate systems (or in other words the matrix A has as its columns the vectors in F expressed in E-coordinates) then

$$M_F = A^{-1} M_E A, \quad M_E = A M_F A^{-1}.$$

This can be used in any one of several ways. One I want to demonstrate here is how to find the matrix of a linear transformation described in geometrical terms.

Example. Suppose we are working with the usual (x, y) plane. Let T be mirror reflection in the line y = 2x. What is the matrix of T in (x, y) coordinates?

The pattern will be the same in most cases. Step (1) We choose a coordinate system F in which T is simple, so that it is easy to calculate M_F . Step (2) We find the relationship between F and the coordinate system we are actually interested in. Step (3) Apply the Proposition.

Step (1) Here we choose f_1 along the line y = 2x, say $f_1 = (1,2)$. Then we choose f_2 to be any vector perpendicular to f_2 . In two dimensions it is simple to do this, because we know that (x,y) rotated by 90° is (-y,x). So we set $f_2 = (-2,1)$. The transformation takes f_1 to itself and flips f_2 into $-f_2$. So in the F-coordinate system we have

$$M_F = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} .$$

Step (2) The matrix A has the f_i as its columns. So

$$A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}, \quad A^{-1} = \frac{\begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}}{5}.$$

Step (3)

$$M_E = AM_F A^{-1} = \begin{bmatrix} -0.6 & 0.8 \\ 0.8 & 0.6 \end{bmatrix}$$
.

Example. We now look at an example in three dimensions. The only reason for looking only at two dimensional stuff so far was to build up geometrical intuition, and everything I have said so far except the classification of linear transformations as scale changes, rotations, or shears is valid in 3D also.

Let T be projection parallel to the axis through (1,1,1) onto the plane P perpendicular to it which passes through the origin. Here we choose f_1 to be (1,1,1) itself. We want to choose f_2 and f_3 in the plane P. Now two vectors are perpendicular when their **dot product** is equal to 0. The dot product of (x,y,z) with (1,1,1) is x+y+z, so the equation of the plane P is x+y+z=0. We can find at least one vector in this plane just by guessing, say $f_2=(1,-1,0)$. We could choose f_3 to be independent vector there, say (1,0,-1), but as we see there is some advantage in similar problems to having f_3 perpendicular to both f_1 and f_2 . In three dimensions we can do this by using the **cross product**.