Mathematics 307-December 5, 1995

Fourth homework - due Thursday, November 30

Exercise 1. Find the solutions of

$$
\begin{aligned}
& 0.999 x+y=1.000 \\
& x+0.999 y=0.999
\end{aligned}
$$

and then

$$
\begin{aligned}
& 0.999 x+y=0.999 \\
& x+0.999 y=1.000
\end{aligned}
$$

and explain carefully why the answers are so different.
Exercise 2. Find the singular value decomposition of the matrix

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
4 & 5 & 6
\end{array}\right]
$$

Exercise 3. Find the eigenvalues and eigenvectors of the matrix
$\left[\begin{array}{llll}1 & 1 / 2 & 1 / 3 & 1 / 4 \\ 1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 \\ 1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 \\ 1 / 4 & 1 / 5 & 1 / 6 & 1 / 7\end{array}\right]$
by Jacobi's method, showing all intermediate steps.
Exercise 4. Find the eigenvalues and eigenvalues of the matrix

$$
\left[\begin{array}{rrrrr}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right]
$$

by Jacobi's method.
Exercise 5. Find the highest eigenvalue of the 5×5 Hilbert matrix by the power method, correct to 8 decimals. How many iterations would it take to find it correctly to 12 decimals?

Exercise 6. Draw the curves

$$
x^{2}+2 x y+3 y^{2}=1, \quad x^{2}-2 x y+3 y^{2}=1
$$

Exercise 7. Write down the full expression for the determinant of

$$
\left[\begin{array}{llll}
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\
a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\
a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \\
a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4}
\end{array}\right]
$$

Exercise 8. If you apply Gaussian elimination to a tridiagonal $n \times n$ matrix, and you don't have to do any swaps, how many multiplications can you expect to perform? If you apply Gaussian elimination to an arbitrary $n \times n$ matrix?
Exercise 9. Find the generalized eigenvalues and eigenvectors of the problem

$$
\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] v=\lambda\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right] v
$$

Exercise 10. Explain why the matrix

$$
\left[\begin{array}{llllll}
4 & 1 & 0 & 0 & 0 & 0 \\
1 & 4 & 1 & 0 & 0 & 0 \\
0 & 1 & 4 & 1 & 0 & 0 \\
0 & 0 & 1 & 4 & 1 & 0 \\
0 & 0 & 0 & 1 & 4 & 1
\end{array}\right]
$$

is positive definite.

