Mathematics 307—December 5, 1995

Fourth homework — due Thursday, November 30

Exercise 1. Find the solutions of

0.999x + y = 1.0	000
x + 0.999y = 0.9	999

and then

$$0.999x + y = 0.999x + 0.999y = 1.000$$

and explain carefully why the answers are so different.

Exercise 2. Find the singular value decomposition of the matrix

[1	2	3
2	3	4
4	5	6

Exercise 3. Find the eigenvalues and eigenvectors of the matrix

Γ1	1/2	1/3	ך 1/4
1/2	1/3	1/4	1/5
1/3	1/4	1/5	1/6
1/4	1/5	1/6	1/7

by Jacobi's method, showing all intermediate steps.

Exercise 4. Find the eigenvalues and eigenvalues of the matrix

Γ	2	-1	0	0	ך 0
-	-1	2	-1	0	0
	0	-1	2	-1	0
	0	0	-1	2	-1
L	0	0	0	-1	2

by Jacobi's method.

Exercise 5. Find the highest eigenvalue of the 5×5 Hilbert matrix by the power method, correct to 8 decimals. How many iterations would it take to find it correctly to 12 decimals?

Exercise 6. Draw the curves \mathbf{I}

$$x^{2} + 2xy + 3y^{2} = 1$$
, $x^{2} - 2xy + 3y^{2} = 1$

Exercise 7. Write down the full expression for the determinant of

Exercise 8. If you apply Gaussian elimination to a tridiagonal $n \times n$ matrix, and you don't have to do any swaps, how many multiplications can you expect to perform? If you apply Gaussian elimination to an arbitrary $n \times n$ matrix?

Exercise 9. Find the generalized eigenvalues and eigenvectors of the problem

ſ	2	-1	0		2	0	0	
	-1	2	-1	$v = \lambda$	0	1	0	v
	0	-1	2		0	0	3	

Exercise 10. Explain why the matrix

Г4	1	0	0	0	0-
1	4	1	0	0	0
0	1	4	1	0	0
0	0	1	4	1	0
LO	0	0	1	4	1_

is positive definite.