Mathematics 307-December 6, 1995

Third homework - due Tuesday, November 7

Exercise 1. Let

$$
M=\left[\begin{array}{rrr}
1 & 3 & -1 \\
-1 & 2 & 0 \\
-2 & 1 & 1
\end{array}\right]
$$

Apply the Gram-Schmidt process to write $M=K A N$ where K is an orthogonal matrix, A a diagonal one, N an upper triangular one with 1's along the diagonal.

Exercise 2. Make a vector space from the polynomials of degree at most 5 . Put a dot product on this vector space according to the formula

$$
P \cdot Q=\int_{-1}^{1} P(x) Q(x) d x
$$

Start with the basis $1, x, \ldots, x^{5}$ and apply the Gram-Schmidt process to it to find an orthogonal basis. Then find an orthonormal one.

Exercise 3. Find the $W L U$ factorization of the matrices

$$
\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right],\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right], \quad\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right], \quad\left[\begin{array}{rrrrr}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right]
$$

Of the similar 10×10 matrix? $N \times N$?
Find the inverse of the 10×10 matrix in this series
Exercise 4. Find the $W L U$ factorization of the matrices

$$
\left[\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right], \quad\left[\begin{array}{lll}
4 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 4
\end{array}\right], \quad\left[\begin{array}{llll}
4 & 1 & 0 & 0 \\
1 & 4 & 1 & 0 \\
0 & 1 & 4 & 1 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

Of the similar 10×10 matrix? $N \times N$?
Find the inverse of the 10×10 matrix in this series
Exercise 5. Find the $W L U$ factorization of the matrix

$$
\left[\begin{array}{rrr}
1 & 1 / 2 & 1 / 3 \\
1 / 2 & 1 / 3 & 1 / 4 \\
1 / 3 & 1 / 4 & 1 / 5
\end{array}\right]
$$

Do this by hand, and then by computer. How different are the answers?
Exercise 6. Find the $W L U$ factorization of

$$
\left[\begin{array}{rrr}
2 & 3 & 1 \\
2 & 2 & 2 \\
-6 & -5 & -8
\end{array}\right]
$$

showing essentially all the intermediate steps. Use class rules for finding the pivot.

