Mathematics 307-section 103

First homework solutions

Exercise 1. Suppose that

$$
\begin{aligned}
& f_{1}=e_{1}+e_{2} \\
& f_{2}=e_{1}+2 e_{2}
\end{aligned}
$$

(a) If x is a point with

$$
x_{E}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

what is x_{F} ?
[
$\left[\begin{array}{ll}1 & 1\end{array}\right]$
$\left[\begin{array}{ll}1 & 2\end{array}\right]$
]
twoinverse
[
[1]
[1]
]
matrixmul
==
(1.a) ==
(b) If

$$
x_{F}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

what is x_{E} ?
[
$\left[\begin{array}{ll}1 & 1\end{array}\right]$
$\left[\begin{array}{ll}1 & 2\end{array}\right]$
]
[
[1]
[1]
]
matrixmul
==
(1.b) ==

Exercise 2. Suppose that

$$
\begin{aligned}
& f_{1}=e_{1}+e_{2}+e_{3} \\
& f_{2}=e_{1}+2 e_{2} \\
& f_{3}=e_{1}-e_{3}
\end{aligned}
$$

(a) If x is a point with

$$
x_{E}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

what is x_{F} ?

```
[
[ lllll
[llll
[ 10-1]
]
threeinverse
[
[1]
[1]
[ 1 ]
]
matrixmul
==
(2.a) ==
(b) If
\[
x_{F}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\]
```

what is x_{E} ?
[
$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$
$\left[\begin{array}{lll}1 & 2 & 0\end{array}\right]$
$\left[\begin{array}{llll}1 & 0 & -1\end{array}\right]$
]
[
[1]
[1]
[1]
]
matrixmul
==
(2.b) ==

Exercise 3. If T is perpendicular projection onto the line $x=y$ what is its matrix? Perpendicular projection onto the line $y=c x$? Perpendicular projection onto the line through the origin and (a, b) ?
A picture shows that the first takes $(1,0)$ and $(0,1)$ to $(1 / 2,1 / 2)$, so its matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]} \\
M_{E}=A M_{F} A^{-1}=\left[\begin{array}{rr}
1 & -c \\
c & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & -c \\
c & 1
\end{array}\right]^{-1}=\frac{1}{1+c^{2}}\left[\begin{array}{rr}
1 & c \\
c & c^{2}
\end{array}\right] \\
M_{E}=A M_{F} A^{-1}=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]^{-1}=\frac{1}{a^{2}+b^{2}}\left[\begin{array}{ll}
a^{2} & a b \\
a b & b^{2}
\end{array}\right]
\end{gathered}
$$

Exercise 4. If T is perpendicular reflection through the line $x=y$ what is its matrix? Perpendicular reflection through the line $y=c x$? Perpendicular reflection through the line through the origin and (a, b) ?

$$
\begin{gathered}
{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]} \\
M_{E}=A M_{F} A^{-1}=\left[\begin{array}{rr}
1 & -c \\
c & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{rr}
1 & -c \\
c & 1
\end{array}\right]^{-1} \\
M_{E}=A M_{F} A^{-1}=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]^{-1}
\end{gathered}
$$

Exercise 5. Find the matrix of rotation through an angle of 45° around the axis through the line $x=y=z$. Of rotation θ around the same axis.
[[0.804738-0.310617 0.505879] [0.505879 0.804738-0.310617] [-0.310617 0.505879 0.804738]]

$$
M_{E}=A M_{F} A^{-1}=\left[\begin{array}{rrr}
1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3} \\
-1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3} \\
0 & -2 / \sqrt{6} & 1 / \sqrt{3}
\end{array}\right]\left[\begin{array}{rrr}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 / \sqrt{2} & 1 / \sqrt{6} \\
-1 / \sqrt{2} & 1 / \sqrt{3} \\
0 & -2 / \sqrt{6}
\end{array} 1 / \sqrt{3}\right]^{-1}
$$

Exercise 6. Suppose that the f 's and e's are as in the first exercise. If a linear transformation has matrix

$$
M_{E}=\left[\begin{array}{rr}
1 & 2 \\
-1 & 1
\end{array}\right]
$$

what is M_{F} ?

```
[
[ 1 1 1]
[ 1 2 ]
]
twoinverse
[
[lll
[ -1 1 ]
]
matrixmul
[
[ 11 1 ]
[ll}
]
matrixmul
==
(6) ==
=>
[[lll.0 9.0] [-3.0 -4.0]]
(6)
```

Exercise 7. What is the matrix of perpendicular reflection in the plane $x+2 y+z=0$?

```
[
[\begin{array}{lll}{1}&{1}&{1}\end{array}]
[ llll}
[ -1 1 1 1]
]
[
[llll}
[llll}
[ 0}000-1
]
matrixmul
[
[ 1 1 1 1 ]
[[\begin{array}{lll}{0}&{-1}&{2}\end{array}]
[ -1 1 1 1}
]
threeinverse
matrixmul
==
(7) ==
```

Exercise 8. Classify each of the following matrices A as a (generalized) scaling, rotation, or shear. In each case find a matrix X such that $X^{-1} A X$ has one of the standard forms. In case of a shear, choose the columns of X as orthogonal as possible.
(a)

$$
A=\left[\begin{array}{rr}
8 & 12 \\
-3 & -4
\end{array}\right]
$$

The characteristic polynomial is $\lambda^{2}-4 \lambda+4$, root 2 repeated. The eigenvector equation is

$$
6 x+12 y=0
$$

so the eigenvector is $(2,-1)$. We have

$$
T\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
12 \\
-4
\end{array}\right]=2\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
12 \\
-6
\end{array}\right]
$$

so

$$
\begin{gathered}
X=\left[\begin{array}{rr}
12 & 0 \\
-6 & 1
\end{array}\right] \\
X^{-1} A X=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
\end{gathered}
$$

(b)

$$
\begin{gathered}
A=\left[\begin{array}{rr}
3 & -1 \\
5 & 1
\end{array}\right] \\
X^{-1} A X=\left[\begin{array}{rr}
2 & -2 \\
2 & 2
\end{array}\right], \quad X=\left[\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right]
\end{gathered}
$$

(c)

$$
\begin{gathered}
A=\left[\begin{array}{ll}
3 & 1 \\
5 & 1
\end{array}\right] \\
X^{-1} A X=\left[\begin{array}{rr}
2+\sqrt{6} & 0 \\
0 & 2-\sqrt{6}
\end{array}\right], \quad X=\left[\begin{array}{rr}
-1 & -1 \\
1-\sqrt{6} & 1+\sqrt{6}
\end{array}\right]
\end{gathered}
$$

(d)

$$
A=\left[\begin{array}{rrr}
1 & 3 & -2 \\
-1 & 6 & -3 \\
-1 & 8 & -4
\end{array}\right]
$$

The roots are all 1 . The matrix $A-I$ is

$$
\left[\begin{array}{rrr}
0 & 3 & -2 \\
-1 & 5 & -3 \\
-1 & 8 & -5
\end{array}\right]
$$

which has rank two, so the eigenvectors make up a line.

$$
X^{-1} A X=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], \quad X=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 2 \\
3 & 1 & 3
\end{array}\right]
$$

(e)

$$
A=\left[\begin{array}{rrr}
0 & 2 & -1 \\
-2 & 5 & -2 \\
-3 & 6 & -2
\end{array}\right]
$$

Here the roots are again 1 repeated three times, the matrix $A-I$ is

$$
\left[\begin{array}{lll}
-1 & 2 & -1 \\
-2 & 4 & -2 \\
-3 & 6 & -3
\end{array}\right]
$$

which as rank one. The eigenvectors form a plane, spanned by $(1,1,1)$ and $(1,2,3)$.

$$
X^{-1} A X=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad X=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 1 \\
3 & 0 & 1
\end{array}\right]
$$

