Mathematics 307—section 103

First homework—due Tuesday September 19, 1995

Exercise 1. Suppose that

$$f_1 = e_1 + e_2$$
$$f_2 = e_1 + 2e_2$$
$$x_E = \begin{bmatrix} 1\\1 \end{bmatrix}$$
$$x_F = \begin{bmatrix} 1\\1 \end{bmatrix}$$

(a) If x is a point with

what is x_F ?

(b) If

$$x_F = \begin{bmatrix} 1\\1 \end{bmatrix}$$

what is x_E ?

Exercise 2. Suppose that

$$f_1 = e_1 + e_2 + e_3$$

$$f_2 = e_1 + 2e_2$$

$$f_3 = e_1 - e_3$$

(a) If x is a point with

$$x_E = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

-

what is x_F ?

(b) If

	[1]
$x_F =$	1
	[1]

what is x_E ?

Exercise 3. If T is perpendicular projection onto the line x = y what is its matrix? Perpendicular projection onto the line y = cx? Perpendicular projection onto the line through the origin and (a, b)?

Exercise 4. If T is perpendicular reflection through the line x = y what is its matrix? Perpendicular reflection through the line y = cx? Perpendicular reflection through the line through the origin and (a, b)?

Exercise 5. Find the matrix of rotation through an angle of 45° around the axis through the line x = y = z. Of rotation θ around the same axis.

Exercise 6. Suppose that the f's and e's are as in the first exercise. If a linear transformation has matrix

$$M_E = \begin{bmatrix} 1 & 2\\ -1 & 1 \end{bmatrix}$$

what is M_F ?

Exercise 7. What is the matrix of perpendicular reflection in the plane x + 2y + z = 0?

Exercise 8. Classify each of the following matrices A as a (generalized) scaling, rotation, or shear. In each case find a matrix X such that $X^{-1}AX$ has one of the standard forms. In case of a shear, choose the columns of X as orthogonal as possible.

(a)

< /	$A = \begin{bmatrix} 8 & 12 \\ -3 & -4 \end{bmatrix}$
(b)	$A = \begin{bmatrix} 3 & -1 \\ 5 & 1 \end{bmatrix}$
(c)	$A = \begin{bmatrix} 3 & 1\\ 5 & 1 \end{bmatrix}$
(d)	$A = \begin{bmatrix} 1 & 3 & -2 \\ -1 & 6 & -3 \\ -1 & 8 & -4 \end{bmatrix}$
(e)	$A = \begin{bmatrix} 0 & 2 & -1 \\ -2 & 5 & -2 \\ -3 & 6 & -2 \end{bmatrix}$