Mathematics 307-section 103

First homework—due Tuesday September 19, 1995
Exercise 1. Suppose that

$$
\begin{aligned}
& f_{1}=e_{1}+e_{2} \\
& f_{2}=e_{1}+2 e_{2}
\end{aligned}
$$

(a) If x is a point with

$$
x_{E}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

what is x_{F} ?
(b) If

$$
x_{F}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

what is x_{E} ?
Exercise 2. Suppose that

$$
\begin{aligned}
& f_{1}=e_{1}+e_{2}+e_{3} \\
& f_{2}=e_{1}+2 e_{2} \\
& f_{3}=e_{1}-e_{3}
\end{aligned}
$$

(a) If x is a point with

$$
x_{E}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

what is x_{F} ?
(b) If

$$
x_{F}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

what is x_{E} ?
Exercise 3. If T is perpendicular projection onto the line $x=y$ what is its matrix? Perpendicular projection onto the line $y=c x$? Perpendicular projection onto the line through the origin and (a, b) ?
Exercise 4. If T is perpendicular reflection through the line $x=y$ what is its matrix? Perpendicular reflection through the line $y=c x$? Perpendicular reflection through the line through the origin and (a, b)?

Exercise 5. Find the matrix of rotation through an angle of 45° around the axis through the line $x=y=z$. Of rotation θ around the same axis.

Exercise 6. Suppose that the f 's and e 's are as in the first exercise. If a linear transformation has matrix

$$
M_{E}=\left[\begin{array}{rr}
1 & 2 \\
-1 & 1
\end{array}\right]
$$

what is M_{F} ?
Exercise 7. What is the matrix of perpendicular reflection in the plane $x+2 y+z=0$?

Exercise 8. Classify each of the following matrices A as a (generalized) scaling, rotation, or shear. In each case find a matrix X such that $X^{-1} A X$ has one of the standard forms. In case of a shear, choose the columns of X as orthogonal as possible.
(a)

$$
A=\left[\begin{array}{rr}
8 & 12 \\
-3 & -4
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{rr}
3 & -1 \\
5 & 1
\end{array}\right]
$$

(c)

$$
A=\left[\begin{array}{ll}
3 & 1 \\
5 & 1
\end{array}\right]
$$

(d)

$$
A=\left[\begin{array}{rrr}
1 & 3 & -2 \\
-1 & 6 & -3 \\
-1 & 8 & -4
\end{array}\right]
$$

(e)

$$
A=\left[\begin{array}{rrr}
0 & 2 & -1 \\
-2 & 5 & -2 \\
-3 & 6 & -2
\end{array}\right]
$$

