Chapter 2. Introduction to flows

1. Review-matrices and linear transformations

If A is an $n \times n$ matrix and v an n-dimensional vector, then $A v$ is another n-dimensional vector. The transformation taking v to $A v$ is called linear. For example, in two dimensions we have

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right]
$$

The matrix has a simple geometric interpretation. If we apply

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

to

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

we get

$$
\left[\begin{array}{l}
a \\
c
\end{array}\right]
$$

and if we apply it to

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

we get

$$
\left[\begin{array}{l}
b \\
d
\end{array}\right]
$$

These images are the columns of A. Now the vectors

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

are the edges of a unit square with lower left corner at the origin, aligned with the coordinate axes. So the columns of a matrix in 2D are the edges of the image of the square that the coordinate unit square gets transformed to by A. Doing this backwards, if we know what a linear transformation does to the coordinate square then we can read off the matrix.

Example. Suppose our transformation rotates points around the origin by 45°. Thus we have the following picture:

The edges of the new square are

$$
\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right], \quad\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
$$

so the matrix of the transformation is

$$
\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right] .
$$

Similarly, rotation by t radians has matrix

$$
\left[\begin{array}{rr}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right] .
$$

One basic fact is that if we first apply a linear transformations T and then a second S, with B the matrix of T and A that of S, the combined transformation has matrix $A B$.

Exercise 1.1. What is the matrix corresponding to scaling in all directions by the constant c ?
Exercise 1.2. What is the matrix corresponding to rotation by 90° ? 180° ? 270° ? 30° ?
Exercise 1.3. Suppose we first rotate by angle t and then scale in all directions by c. What is the final matrix? What do we get if we do these operations in the opposite order?
Exercise 1.4. What is a matrix corresponding to this picture? Find a second! Why are there two?

Exercise 1.5. Same for these two pictures?

Vector fields and velocity

Here is the picture of a vector field. At each point (x, y) we sketch an arrow corresponding to $v(x, y)$.

Exercise 1.6. What is $v(x, y)$ here?
The picture suggests motion. In fact, I think it is fair to say that it suggests a flow of the whole plane, which is to say it suggests that every point in the plane is in motion. In this case, all points have a uniform angular velocity, which implies that farther points have to move faster. The explicit interpretation here is the vector field tells us what the velocity at each point is.

In a flow, each point will be moved along as time proceeds. Suppose that point P is at position $F_{t}(P)$ at time t. Then its velocity at time $t=0$ is

$$
\lim _{h \rightarrow 0} \frac{F_{h}(P)-F_{0}(P)}{h}
$$

The flow is called stationary if the velocity at each point does not depend on time. This doesn't mean that the points don't move, but just that the pattern of the flow doesn't change in time. In case of a stationary flow, the velocity at any point gives rise to a vector field.
Exercise 1.7. If

$$
F_{t}(P)=\left[\begin{array}{rr}
\cos \omega t & -\sin \omega t \\
\sin \omega t & \cos \omega t
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad P=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

what is the vector field?

