1. Use a variant of mathematical induction to prove that

$$
1+r+\cdots+r^{n-1}=\frac{1-r^{n}}{1-r}
$$

for all $n>1$.
2. The Fibonacci numbers are

$$
f_{0}=0, \quad f_{1}=1, \quad f_{2}=1, \quad \ldots, \quad f_{n+2}=f_{n+1}+f_{n}
$$

Find numbers α and β, A and B such that $f_{n}=A \alpha^{n}+B \beta^{n}$ for all $n \geq 0$. Find α and β by subjecting them to the recursion relation $x^{n+2}=x^{n+1}+x^{n}$. Find A and B by considering f_{0} and f_{1}. Use a variant of mathematical induction to prove the formula for f_{n}, for all $n \geq 0$.
3. Write a complete Java program e that has as input a single integer n and outputs the first n digits of e.
4. Write a Java program sqrt with two inputs a and n and outputs the first n digits of \sqrt{a}. Use Newton's method to do this. By experiment, answer this: roughly how many steps of Newton's method are required to do this?
5. Explain in your own words why $1.0000000 \ldots$ and $0.99999999 \ldots$ are the same number.
6. Explain in your own words why

$$
1+r+r^{2}+\cdots=\frac{1}{1-r}
$$

if $|r|<1$.
7. One method of solving equations is by iteration. This solves an equation $x=f(x)$ by starting with a avlue x_{0} of x and setting $x_{n+1}=f\left(x_{n}\right)$. Explain by diagrams and words why this always works if $f(x)=x(a-x)$ where $1<a<4$, and x_{0} is a positive number near 0 . (The cases $a>0, a<0$ are different.) What is the explicit solution in this case? Roughly how many steps does it take to find n digits of the solution, if $x_{0}=1$?
8. The difference between

$$
E_{N}=1+1+1 / 2!+1 / 3!+\cdots+1 / N!
$$

and $(1+1 / N)^{N}$ is roughly proportional to $1 / N$. In fact it is equal to c_{N} / N where c_{N} converges to a limiting value as N gets large. Find an explicit formula for c_{N}, and an explicit formula for the limiting value. Similarly for the difference between e and $(1+1 / N)^{N}$.
9. If you use your calculator to estimate e by calculating $(1+1 / N)^{N}$ for large N, you will see that the estimate converges, but not to e. What does it converge to? Why is it not the same as e ?

