Mathematics 220 - Fall 2000 - Bill Casselman's section

Study guide for the mid-term examination on Monday, October 23

The examination questions will be very similar to some of these, with the exception of one question which will exhibit a fragment of Java program and ask you to tell what it does.

1. Find constants $a_{3}, a_{2}, a_{1}, a_{0}$ such that

$$
1+2^{2}+3^{2}+\cdots+n^{2}=a_{3} n^{3}+a_{2} n^{2}+a_{1} n+a_{0}
$$

for all integers $n>=0$. Use mathematical induction to prove that your formula is correct.
2. Explain why the ratio of successive Fibonacci numbers f_{n+1} / f_{n} approaches a constant value as n gets large.
3. Find a series in powers of x for

$$
\frac{1}{1+x}
$$

For which values of x does this series converge? Use it to find by a formal calculation a likely series expression for

$$
\log _{e}(1+x)=\int_{0}^{x} \frac{1}{1+u} d u
$$

For which values of x does this series converge?
4. One special case of this series asserts that

$$
\log _{e} 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

This series converges to a definite value. How many terms do you need to estimate the value of $\log _{e} 2$ correctly to 3 decimal places?
5. Use the integral

$$
\int \frac{1}{1+x^{2}} d x
$$

to find a convergent series for $\pi / 6$. About how many terms of this series are required to calculate $\pi / 6$ correctly to 100 figures?
6. Explain why the series

$$
1+\frac{1}{2^{k}}+\frac{1}{3^{k}}+\cdots+\frac{1}{n^{k}}+\cdots
$$

converges for $k \geq 2$.
7. Suppose you want to divide $a_{n-1} a_{n-2} \ldots a_{0}$ into $b_{n} b_{n-1} \ldots b_{0}$ (these are both meant to be decimal representations), which you may assume to give you a one-digit quotient q. Suppose that \hat{q} is the maximum of 9 or the quotient $b_{n} b_{n-1} / a_{n}$. Explain why $q \leq \hat{q}$.
8. As we know from the example

$$
1.00000 \ldots=0.9999999 \ldots,
$$

some numbers may have more than one decimal representation. For any for any number $x \geq 0$, however, there will be exactly one representation of the form

$$
x=\sum_{n}^{-\infty} a_{i} 10^{i}
$$

with the property that for all m

$$
\sum_{n}^{n-m} a_{i} 10^{i} \leq x<\sum_{n}^{n-m} a_{i} 10^{i}+10^{n-m}
$$

Prove this (not hard to describe how to find it more or less explicitly) and show that no such representation will end with an infinite string ... $9999999 \ldots$
9. Explain why the only numbers with more than one decimal representation are those with a representation ending in a string of nines.

