Mathematics 220 - Solutions to final examination for December 19, 2000

1. (a) State precisely what it means for the sequence y_{n} to converge to a number y.
(b) State precisely what it means for the series

$$
y_{1}+y_{2}+y_{3}+\cdots
$$

to converge.
(c) Prove directly from these definitions that if the series

$$
y_{1}+y_{2}+y_{3}+\cdots
$$

converges then the terms y_{i} converge to 0 .
(a) The sequence y_{i} converges to y when for any $\epsilon>0$ we can find N with the property that for all $n>N$ we have $\left|y_{i}-y\right|<\epsilon$.
(b) The series converges when the sequence of partial sums

$$
s_{1}=y_{1}, \quad s_{2}=y_{1}+y_{2}, \quad s_{3}=y_{1}+y_{2}+y_{3}, \quad \ldots
$$

converges.
(c) If the series converges to say y, then for any ϵ we can find N (depending on ϵ) with the property that $\left|s_{i}-y\right|<\epsilon$ for all $i>N$. But then by Cauchy's inequality (see later) for $i>N$

$$
\left|y_{i}\right|=\left|s_{i}-s_{i-1}\right| \leq\left|s_{i}-y\right|+\left|y-s_{i-1}\right|<2 \epsilon .
$$

So we choose N for the original series suitable for $\epsilon / 2$.
2. Give a complete proof that if $|x|<1$ then the series

$$
1+x+x^{2}+\cdots
$$

converges to $1 /(1-x)$.
Look at the course notes.
3. (a) What is the output from the following program?
public class t \{

```
static int y = 13;
```

 public static void main(String[] arg) \{
 int [] a = \{11, 9, 12\};
 int [] b = \{10, 2\};
 int [] c = mystery (a, b);
 for (int \(i=0 ; i<c . l e n g t h ; i++\)) \{
 System.out.print(c[i] + ":");
 \}
 \}
 public static int [] mystery (int a[], int [] b) \{
 int[] \(c=\) new int[a.length+b.length];
 for (int \(i=0 ; i<b . l e n g t h ; i++\)) \{
 int \(z=0\);
 int \(d=b[i] ;\)
    ```
        for (int j = 0;j<a.length;j++) {
        int x = c[i+j] + d*a[j] + z;
        c[i+j] = x % y;
        z = x/y;
        }
        c[i+a.length] = z;
        }
        return(c);
    }
}
```

(b) Explain in your own words what this program is really doing.
(c) There is something not quite right about the mystery routine. What problem might occur?
(a) $6: 3: 4: 9: 2$.
(b) It is multiplying numbers expressed in terms of 'digit' arrays in base 13, written as usual in low to high order.
(c) If b has length 0 then c will have length the same as a, and in the line $c[i+a . l e n g t h]=z$; we will get a range error.
4. State and prove Cauchy's inequality in the most general form we have seen in this course.

The inequality states that

$$
\left|a_{1}+a_{2}+\cdots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|
$$

for all $n \geq 1$.
For $n=1$ this is tautological. For $n=2$ we prove it by cases according to the signs of a_{1} and a_{2}. For $n>2$ we prove it by mathematical induction, using the case of $n=2$, since then

$$
\begin{aligned}
\left|a_{1}+a_{2}+\cdots+a_{n}\right| & \leq\left|a_{1}+a_{2}+\cdots+a_{n-1}\right|+\left|a_{n}\right| \quad(\text { case } n=2) \\
& \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right| \quad \text { (inductive assumption) }
\end{aligned}
$$

5. State Cauchy's criterion for convergence. Use it to give a complete proof that if the series

$$
y_{1}+y_{2}+\cdots
$$

converges and $\left|x_{i}\right| \leq y_{i}$ for all i, then so does the series

$$
x_{1}+x_{2}+\cdots
$$

See the notes, from which this is taken directly.
6. (a) Prove using Cauchy's criterion directly that the series

$$
x+8 x^{2}+27 x^{3}+64 x^{4}+\cdots
$$

converges for $|x|<1$.
(b) Make a good estimate of how many terms of this series are required to compute its value to within an accuracy of 10^{-100}, when $x=0.9$?
(a) If $y_{n}=n^{3} x^{n}$ then

$$
\rho_{n}=\frac{y_{n+1}}{y_{n}}=\left(\frac{n+1}{n}\right)^{3} x
$$

which has limit x as n grows large, and in particular we can find r with $x<r<1$ such that $\rho_{n}<r$ for large n, say for $n \geq N$. Then for all $n \geq N$ we have

$$
y_{n}<y_{N} r^{n-N}
$$

Comparison with the geometric series for r guarantees convergence.
(b) We want

$$
n^{3} x^{n}+(n+1)^{3} x^{n+1}+\cdots<10^{-100}
$$

We can rewrite and estimate this as

$$
\begin{aligned}
& n^{3} x^{n}\left(1+\left(\frac{n+1}{n}\right)^{3} x+\left(\frac{n+1}{n}\right)^{3}\left(\frac{n+2}{n+1}\right)^{3} x^{2}+\cdots\right) \\
& \quad<n^{3} x^{n}\left(1+\left(\frac{n+1}{n}\right)^{3} x+\left(\frac{n+1}{n}\right)^{6} x^{2}+\cdots\right) \\
& \quad=n^{3} x^{n}\left(\frac{1}{1-(1+1 / n)^{3} x}\right)
\end{aligned}
$$

with $x=0.9$. We want to choose n so

$$
n^{3} x^{n}\left(\frac{1}{1-(1+1 / n)^{3} x}\right)<10^{-100}
$$

The integer n will be pretty large, so this term will be approximately

$$
n^{3} x^{n}\left(\frac{1}{1-x}\right)
$$

and even more roughly

$$
x^{n}\left(\frac{1}{1-x}\right)
$$

so we solve

$$
(0.9)^{n}=10^{-101}, \quad n=-101 \ln (10) / \ln (0.9)=2207
$$

The true n must be a bit larger. Trial and error gives $n=2430$.
7. Suppose $y>0$. Prove that if the series

$$
\sum c_{i} y^{i}
$$

converges then so does every series

$$
\sum_{i} c_{i} x^{i}
$$

with $|x|<y$.
This is tricky, because although $y>0$, the c_{i} could be negative. Therefore you cannot say that $\left|c_{i} x^{i}\right| \leq c_{i} y^{i}$, and cannot use a direct comparison. A really different idea is needed.

From an earlier question, we know that $c_{i} y^{i}$ converges to 0 . In particular, it is bounded: we can find C such that $c_{i} y^{i} \leq C$ for all i. But then

$$
c_{i} x^{i}=c_{i} y^{i}\left(\frac{x}{y}\right)^{i} \leq C\left(\frac{x}{y}\right)^{i}
$$

so that convergence follows by comparison with the geometric series $C r^{i}$ with $r=x / y$.
8. (a) Prove in as much detail as you can that if $0<r<1$ then for all large values of n

$$
r^{n}<\frac{1}{n}
$$

(b) Same, replacing $1 / n$ by $1 / n^{2}$.
(a) There are lots of ways to see this. (i) Let $x_{n}=n r^{n}$. Then

$$
\rho_{n}=\frac{x_{n+1}}{x_{n}}=\left(\frac{n+1}{n}\right) r
$$

and since $r<1$, this ratio is less than 1 for large enough n, say less tahn $\rho<1$ for $n \geq N$. So $n r^{n}=$ $N r^{N} \rho_{N} \rho_{N+1} \ldots \rho_{n-1}<N r^{N} \rho^{n-N}$ for $n \geq N$. But these terms definitely converge to 0 .
(ii) If the terms $1 / r^{n}$ are not eventually less than $1 / n$ then for arbitrarily large n we'll have $1 / r^{n} \geq 1 / n$. This implies that $1 / r^{n} \geq 1 / n$ for all large enough n. But the series $\sum r^{n}$ converges while the series $\sum 1 / n$ does not, so this leads to a contradiction.
(b) But if you have proven the first part, the second is immediate. The inequality $r^{n}<1 / n^{2}$ is equivalent to $r^{n / 2}<1 / n$, taking square roots. If $0<r<1$ then so is $0<r^{1 / 2}<1$, so the second case follows directly from the first.

