
Cauchy’s criterion for convergence

1. The definition of convergence

The sequence xn converges to X when this holds: for any ε > 0 there exists K such that |xn − X | < ε for
all n ≥ K.

Informally, this says that as n gets larger and larger the numbers xn get closer and closer to X . But the
definition is something you can work with precisely. In effect, the definition says that in order to show that a
sequence xn converges to X you have to explain how to get K from ε. It is important to realize that you do
not have find the best possible value for K - just anything that works will enable you to verify convergence.

2. Convergent subsequences

Any bounded sequence of real numbers has a converging subsequence.

Let the sequence be xn. We can assume all of one sign, because we can choose an infinite subseueqnce of one
sign. Say non-negative. Because of boundedness, we can assume all xi ≤ 10k for some k. An infinite number
of the xi must have a first digit in common; throw away the rest. Let y0 be the first in what is left. Among
those left, an infinite number must have the same second digit. Let y1 be the first among these. Throw away
the rest. Etc. Then after the first n all the yi will have the same first n digits. We can construct a particular
real number to be that number Y whose first n digits agree with those of yn. The difference between yn and
Y will be at most 10k−n. This makes it easy to verify the convegence to Y .

3. What this means for series

A series is a formal expression
x0 + x1 + · · ·

and it corresponds to the sequence of partial sums

s1 = x0, s2 = x0 + x1, s3 = x0 + x1 + x2, . . .

The series is said to converge if the sequence of partial sums si converges. If a series converges, then its
individual terms must have limit 0, but this is not a sufficient condition for convergence. Applying the
definition literally, we see that the series converges to the number S if for any ε there exists K such that

|Sn − S| = |x0 + x1 + · · · + xn−1 − S| < ε

whenever n > K. We’ll see how this works in practice in the next section.

4. The geometric series

Fix x with |x| < 1, and consider the series

1 + x + x2 + · · · .

Algebra tells us that the n-th partial sum is

Sn = 1 + · · · + xn−1 =
1 − xn

1 − x

Intuitively, this should converge to S = 1/(1 − x) as n gets larger. Let’s try to verify the definition in this
case.
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We have explicitly

S − Sn =
1

1 − x
− 1 − xn

1 − x
=

xn

1 − x

So now we have to verify that for any ε > 0 there exists K such that
∣∣∣∣

xn

1 − x

∣∣∣∣ < ε or xn < (1 − x)ε

if n > K. But we can practically take as given in this course that this is so, or in other words that if |x| < 1
then the sequence xn converges to 0. Explicitly, we can solve

xK = (1 − x)ε, K =
ln(ε(1 − x))

ln(x)

If i ≥ K then |x|i ≤ |x|K , and hence xi ≤ (1 − x)ε.

So in this case we can use the definition to prove directly that the geometric series with |x| < 1 converges to
1/(1− x). It is rare to know exactly whjat a series converges to. The geometric series plays a crucial role in
the subject for this and other reasons.

5. Cauchy’s criterion

The definition of convergence refers to the number X to which the sequence converges. But it is rare to
know explicitly what a series converges to. In fact, the whole point of series is often that they converge to
something interesting which you might not know how to describe otherwise. For example, it is essentially
the definition of e that it is the number to which the series

1 + 1 + 1/2 + 1/3! + · · ·

converges.

Therefore what is needed is a criterion for convergence which is internal to the sequence (as opposed to
external).

Cauchy’s criterion. The sequence xn converges to something if and only if this holds: for every ε > 0 there
exists K such that |xn − xm| < ε whenever n, m > K.

This is necessary and sufficient.

To prove one implication: Suppose the sequence xn converges, say to X . Then by definition, for every ε > 0
we can find K such that |X − xn| < ε whenever n ≥ K. But then if we are given ε > 0 we can find K such
that |X − xn| < ε/2 for n ≥ K, and then

|xn − xm| = |(xn − X) − (xm − X)| < |xn − X | + |xm − X | < ε/2 + ε/2 = ε

for m, n ≥ K.

To prove the other: Suppose the criterion holds. We know that we have a subsequence xni which converges
to some X . I claim that in fact the whole sequence converges to this same X . We know that for any ε > 0
we can find K1 such that |xni − X | < ε for i ≥ K1. We also know that if we are given ε > 0 we can find K2

such that |xn − xm| < ε for n, m ≥ K2.

Now we want to prove that for any ε > 0 we can find K such that |xn − X | < ε for n ≥ K.

First choose K1 such that |X − xni | < ε/2 for i ≥ K1. Second, choose K2 such that

|xn − xm| < ε/2
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for m, n ≥ K2. Suppose n ≥ K2. Choose some xni with both ni ≥ K2 and i ≥ K1. Then

|xn − X | = |(xn − xni) + (xni − X)| ≤ |xn − xni | + |xni − X | < ε/2 + ε/2 = ε .

6. Convergence by comparison

Theorem. If the series of non-negative terms

x0 + x1 + x2 + · · ·

converges and |yi| ≤ xi for each i, then the series

y0 + y1 + y2 + · · ·

converges also.

Suppose we are given ε > 0. By Cauchy’s criterion, we know that we can find K such that

|xm + xm+1 + · · · + xn−1| < ε

for K ≤ m < n. But then for the same K

|ym + ym+1 + · · · + yn−1| ≤ xm + xm+1 + · · · + xn−1 < ε

Because of this

Lemma. (Cauchy’s inequality) We have

|a1 + a2 + · · · + an| ≤ |a1| + |a2| + |a3| + · · · + |an|

Prove this by induction, starting with 2. We have already used this inequality with two terms in a previous
section.

Corollary. If the series
|x0| + |x1| + · · ·

converges, then so does
x0 + x1 + · · ·

The series is said to converge absolutely if the series

|x0| + |x1| + · · ·

converges.

Corollary. If |xi| ≤ Cqi for all i, where 0 ≤ q < 1, then the series

x0 + x1 + · · ·

converges.

7. A new example

Let’s now look at the series
x + 2x2 + 3x3 + · · · .
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I claim that it converges for all x with |x| < 1.

None of the techniques mentioned so far apply directly to it. It looks something like the geometric series,
but the coefficient of xn grows with n instead of remaining bounded. We need a new idea to deal with it.

It is true that the coefficients grow with n, but they don’t grow very fast. They form an arithmetic progres-
sion, and in particular

Theorem. The sequence n grows less slowly than any geometric sequence rn if r > 1.

This is not immediately apparent. If r is close to 1 then the geometric sequence starts out slowly, perhaps
very slowly. Nonetheless sooner or later it surpasses the arithmetic progression. This is not quite as easy to
see as one might like, since it is not easy to specify the smallest n such that rn > n.

Lemma. If r > 1 then for some N we have rn > n whenever n ≥ N .

Let r = 1 + x, and choose M large enough that Mx > N − 1. Then by the binomial theorem, for n ≥ M

rn = (1 + x)n = 1 + nx + positive terms > 1 + Mx > 1 + (N − 1) = N .

We can now use this to see that the series

x + 2x2 + 3x3 + · · ·
converges for |x| < 1. Since |x| < 1, we can find r > 1 such that r|x| < 1 also (say r =

√
1/|x|). We can

then find N such that rn > n for all n ≥ N . This implies that for n ≥ N we have

n|x|n < rn|x|n .

But then after the first N terms the series
∑

nxn is dominated by the geometric series for r|x|, hence
converges

8. The ratio test

The same argument used for one series in the previous section can be applied to prove this as well:

Theorem. (The ratio test) Suppose
x0 + x1 + x2 + . . .

is a series such that the limit of |xn+1/xn| is less than 1. Then the series converges.

This will show, for example, that the series

x + 4x2 + 9x3 + · · ·
converges for |x| < 1.

To test yourself: How many terms of this series are required to compute its limit to within 10−100?

9. Power series

Another related result is this:

Theorem. Suppose the series ∑
cnyn

to converge. Then so do all series ∑
cnxn

with |x| < y.


