Accuracy in integrating

The trapezoid rule has an overall error of order Δx^{2}. This means that if you use the trapezoid rule to estimate

$$
\int_{a}^{b} f(x) d x
$$

with a reasonably small value of the step size Δx, and then you try again, say with a step size half as large, the error in the second estimate will be about $1 / 4$ as large as that in the first. So we have the following simple mental picture:

```
■ true value
\square step size }\Deltax/
\square
\square
\square step size }\Delta
```

As the picture shows, the error in the first estimate is $4 / 3$ times the difference between the two estimates. So we have the following situation:

- One estimate of the integral tells you nothing about how accurate it is.
- Two estimates with different small enough step sizes do give you a good estimate of the error in either of those estimates.
We know roughly that the error is $C \Delta x^{2}$ for some constant C. Two estimates of the integral therefore enable us to estimate what C is. Let $A_{\Delta x}$ be the estimate with step size Δx. We have

$$
C \Delta x^{2}=(4 / 3)\left(A_{\Delta x / 2}-A_{\Delta x}\right), \quad C=\frac{4}{3} \frac{A_{\Delta x / 2}-A_{\Delta x}}{\Delta x^{2}}
$$

Now suppose we would like to get an estimate of the integral to within a certain allowed error ε. To find the right step size to use we solve

$$
C \Delta x^{2}=\varepsilon
$$

for Δx.

- To obtain an estimate of an integral may require three different estimates in all.

Similar reasoning applies to any of the methods of estimating an integral or solving a differential equation, except that the error will in general be proportional to some other power Δx^{k}.

