
Asymptotic series

In order to evaluate the integral of the normal distribution

1√
2π

∫ x
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e−t2/2 dt

we have so far explained how to compile a table of values and then interpolate if necessary for intermediate
values of x. But this will not work over the entire range [0,∞), since the table must be finite. For this
particular integral there is an extremely useful trick to deal with this problem.
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Integration by parts asserts that ∫
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We can do this again (and again):
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which gives us all in all
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At first sight this may seem like a useless enterprise, since the integrals are getting more and more compli-
cated. But the integral in each case is at least positive, so we see that
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We can phrase this in a simple way. The integral∫ ∞
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is sandwiched between any two successive finite sums from the series
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If x = 4, for example, we see that
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which tells us that
0.000078624 <
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to five decimals.

It is easy to generate the terms in the series. The first term is 1/x. Subsequent terms are of the form
ck/xk. In going from one term to the next, multiply the numerator by −k, the numerator by x2. The total
factor is −k/x2. It may happen that the first few terms are small, but the numerator of this factor grows
indefinitely, while the denominator remains constant. Soone or later, then, the terms must start to grow
larger in magnitude. In particular, the series never converges. As we have seen, however, this does not mean
it is useless for computation. It does mean, however, that it aonly allows limited accuracy in computation.
The most accurate calculation is obtained by adding all th terms up to the point where the magnitude of
the terms grows.

Let’s see how this works with x = 4. The terms will decrease until k > 16. We get

term sum
0.25 0.25

−0.015625 0.234375
0.0029296875 0.2373046875

−9.1552734375E-4 0.23638916015625
4.00543212890625E-4 0.23678970336914062

−2.2530555725097656E-4 0.23656439781188965
1.548975706100464E-4 0.2367192953824997

−1.258542761206627E-4 0.23659344110637903
1.1798838386312127E-4 0.23671142949024215

−1.2536265785456635E-4 0.2365860668323876

The terms have started to grow. We conclude that

∫ ∞
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e−t2/2 dt ∼ e−8 · 0.2366-0.2367 = 0.0000794

correct to all visible places.
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