Table of integrals

Part I — Elementary integrals

All of these follow immediately from the table of derivatives. Implicit in every one of the indefinite integrals is an integration constant. This table should be memorized.

- $\int c f(x) d x=c \int f(x) d x$
- $\int f(x)+g(x) d x=\int f(x) d x+\int g(x) d x$
- $\quad \int c d x=c x$
- $\int x^{r} d x=\frac{x^{r+1}}{r+1} \quad(r \neq-1)$
- $\int \frac{1}{x} d x=\log |x|$
- $\int e^{x} d x=e^{x}$
- $\int \sin x d x=-\cos x$
- $\int \cos x d x=\sin x$
- $\int \frac{1}{x^{2}+1} d x=\arctan x$
- $\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x$

Part II - A selection of more complicated integrals

These begin with the two basic formulas, change of variables and integration by parts. Note that some of the formulas do not apply when a denominator is 0 .

- $\quad \int f(g(x)) g^{\prime}(x) d x=\int f(u) d u$ where $u=g(x)$ (change of variables)
- $\quad \int f(g(x)) d x=\int f(u) \frac{d x}{d u} d u$ where $u=g(x)$ (different form of the same change of variables)
- $\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x$ (integration by parts)
- $\quad \int f d g=f g-\int g d f$ (different form of integration by parts)
- $\int e^{c x} d x=\frac{1}{c} e^{c x}(c \neq 0)$
- $\quad \int a^{x} d x=\frac{1}{\log a} a^{x}(a \neq 1, a>0)$
- $\quad \int \log x d x=x \log x-x$
- $\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \arctan \frac{x}{a}$
- $\int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|$
- $\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\arcsin \frac{x}{a}$
- $\int \sqrt{a^{2}-x^{2}} d x=\frac{a^{2}}{2} \arcsin (x / a)+\frac{x}{2} \sqrt{a^{2}-x^{2}}$
- $\int \frac{1}{\sqrt{x^{2} \pm a^{2}}} d x=\log \left|x+\sqrt{x^{2} \pm a^{2}}\right|$
- $\int \frac{1}{x^{2}+b x+c} d x$? It depends, essentially, on the nature of the roots of $x^{2}+b x+c=0$, but not explicitly.

We first complete the square to write

$$
\begin{aligned}
x^{2}+b x+c & =x^{2}+b x+\frac{b^{2}}{4}+c-\frac{b^{2}}{4} \\
& =\left(x+\frac{b}{2}\right)^{2}+c-\frac{b^{2}}{4}
\end{aligned}
$$

If $c-b^{2} / 4>0$, set it equal to a^{2}; if <0 equal to $-a^{2}$; and if $=0$ forget it. In any event you will arrive after a change of variables at one of the three integrals

$$
\int \frac{1}{x^{2}+a^{2}} d x, \quad \int \frac{1}{x^{2}-a^{2}} d x, \quad \int \frac{1}{x^{2}} d x
$$

- $\int \sqrt{x^{2} \pm a^{2}} d x=\frac{1}{2}\left(x \sqrt{x^{2} \pm a^{2}} \pm a^{2} \log \left|x+\sqrt{x^{2} \pm a^{2}}\right|\right)$
- $\int x^{n} e^{c x} d x=\frac{x^{n} e^{c x}}{c}-\frac{n}{c} \int x^{n-1} e^{c x} d x$ etc. This is to be used repeatedly until you arrive at the case $n=0$, which you can do easily.

